Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan.
J Neurosci Methods. 2010 Jun 15;189(2):295-302. doi: 10.1016/j.jneumeth.2010.03.030. Epub 2010 Apr 8.
In this paper, a feature extraction method through the time-series prediction based on the adaptive neuro-fuzzy inference system (ANFIS) is proposed for brain-computer interface (BCI) applications. The ANFIS time-series prediction together with multiresolution fractal feature vectors (MFFVs) is applied for feature extraction in motor imagery (MI) classification. The features are extracted from the electroencephalography (EEG) signals recorded from subjects performing left and right MI. Two ANFISs are trained to perform time-series predictions for respective left and right MI data. Features obtained from the difference of MFFVs between the predicted and actual signals are then calculated through a window of EEG signals. Finally, a simple linear classifier, namely linear discriminant analysis (LDA), is used for classification. The proposed method is estimated with classification accuracy and the area under the receiver operating characteristics curve (AUC) on six subjects from two data sets. I also assess the performance of proposed method by comparing it with well-known linear adaptive autoregressive (AAR) model, AAR time-series prediction, and neural network (NN) time-series prediction. The results indicate that ANFIS time-series prediction together with MFFV features is a promising method in MI classification.
本文提出了一种基于自适应神经模糊推理系统(ANFIS)的时间序列预测的特征提取方法,用于脑机接口(BCI)应用。将 ANFIS 时间序列预测与多分辨率分形特征向量(MFFV)一起应用于运动想象(MI)分类中的特征提取。特征从执行左、右 MI 的受试者记录的脑电图(EEG)信号中提取。训练两个 ANFIS 以分别对左、右 MI 数据进行时间序列预测。然后通过 EEG 信号的窗口计算从预测和实际信号之间的 MFFV 差值获得的特征。最后,使用简单的线性分类器,即线性判别分析(LDA)进行分类。使用来自两个数据集的六个受试者的分类准确性和接收器操作特性曲线(ROC)下的面积(AUC)来评估该方法。还通过与知名的线性自适应自回归(AAR)模型、AAR 时间序列预测和神经网络(NN)时间序列预测进行比较来评估该方法的性能。结果表明,ANFIS 时间序列预测与 MFFV 特征相结合是 MI 分类的一种很有前途的方法。