Hsu Wei-Yen, Sun Yung-Nien
Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan, ROC.
J Neurosci Methods. 2009 Jan 30;176(2):310-8. doi: 10.1016/j.jneumeth.2008.09.014. Epub 2008 Sep 20.
In this study, an electroencephalogram (EEG) analysis system for single-trial classification of motor imagery (MI) data is proposed. Feature extraction in brain-computer interface (BCI) work is an important task that significantly affects the success of brain signal classification. The continuous wavelet transform (CWT) is applied together with Student's two-sample t-statistics for 2D time-scale feature extraction, where features are extracted from EEG signals recorded from subjects performing left and right MI. First, we utilize the CWT to construct a 2D time-scale feature, which yields a highly redundant representation of EEG signals in the time-frequency domain, from which we can obtain precise localization of event-related brain desynchronization and synchronization (ERD and ERS) components. We then weight the 2D time-scale feature with Student's two-sample t-statistics, representing a time-scale plot of discriminant information between left and right MI. These important characteristics, including precise localization and significant discriminative ability, substantially enhance the classification of mental tasks. Finally, a correlation coefficient is used to classify the MI data. Due to its simplicity, it will enable the performance of our proposed method to be clearly demonstrated. Compared to a conventional 2D time-frequency feature and three well-known time-frequency approaches, the experimental results show that the proposed method provides reliable 2D time-scale features for BCI classification.
在本研究中,提出了一种用于运动想象(MI)数据单试次分类的脑电图(EEG)分析系统。脑机接口(BCI)工作中的特征提取是一项重要任务,它显著影响脑信号分类的成功率。连续小波变换(CWT)与学生双样本t统计量一起用于二维时间尺度特征提取,其中特征是从执行左右运动想象的受试者记录的EEG信号中提取的。首先,我们利用CWT构建二维时间尺度特征,该特征在时频域中产生EEG信号的高度冗余表示,从中我们可以获得事件相关脑去同步化和同步化(ERD和ERS)成分的精确定位。然后,我们用学生双样本t统计量对二维时间尺度特征进行加权,该统计量表示左右运动想象之间判别信息的时间尺度图。这些重要特征,包括精确定位和显著的判别能力,大大提高了心理任务的分类。最后,使用相关系数对运动想象数据进行分类。由于其简单性,它将能够清楚地展示我们提出的方法的性能。与传统的二维时频特征和三种著名的时频方法相比,实验结果表明,该方法为BCI分类提供了可靠的二维时间尺度特征。