Suppr超能文献

对 1 岁时神经发育正常的极早产儿脑电图背景活动的成熟变化进行定量分析。

Quantitative analysis of maturational changes in EEG background activity in very preterm infants with a normal neurodevelopment at 1 year of age.

机构信息

Máxima Medical Centre, Veldhoven, The Netherlands.

出版信息

Early Hum Dev. 2010 Apr;86(4):219-24. doi: 10.1016/j.earlhumdev.2010.03.003. Epub 2010 Apr 10.

Abstract

BACKGROUND

The electroencephalographic (EEG) background pattern of preterm infants changes with postmenstrual age (PMA) from discontinuous activity to continuous activity. However, changes in discontinuity have been investigated by visual analysis only.

AIM

To investigate the maturational changes in EEG discontinuity in healthy preterm infants using an automated EEG detection algorithm.

STUDY DESIGN

Weekly 4h EEG recordings were performed in preterm infants with a gestational age (GA)<32weeks and normal neurological follow-up at 1year. The channel C3-C4 was analyzed using an algorithm which automatically detects periods of EEG inactivity (interburst intervals). The interburst-burst ratio (IBR, percentage of EEG inactivity during a moving time window of 600s) and mean length of the interburst intervals were calculated. Using the IBR, discontinuous background activity (periods with high IBR) and continuous background activity (periods with low IBR) were automatically detected and their mean length during each recording was calculated. Data were analyzed with regression and multivariate analysis.

RESULTS

79 recordings were performed in 18 infants. All recordings showed a cyclical pattern in EEG discontinuity. With advancing PMA, IBR (R(2)=0.64; p<0.001), interburst interval length (R(2)=0.43; p<0.001) and length of discontinuous activity (R(2)=0.38; p<0.001) decreased, while continuous activity increased (R(2)=0.50; p<0.001). Multivariate analysis showed that all EEG discontinuity parameters were equally influenced by GA and postnatal age.

CONCLUSION

Analyzing EEG background activity in preterm infants is feasible with an automated algorithm and shows maturational changes of several EEG derived parameters. The cyclical pattern in IBR suggests brain organisation in preterm infant.

摘要

背景

早产儿的脑电图(EEG)背景模式随胎龄(PMA)的变化而从不连续活动变为连续活动。然而,不连续性的变化仅通过视觉分析进行了研究。

目的

使用自动脑电图检测算法研究健康早产儿脑电图不连续性的成熟变化。

研究设计

对胎龄<32 周且神经发育正常的早产儿进行每周 4 小时的脑电图记录,在 1 岁时进行随访。使用一种算法对通道 C3-C4 进行分析,该算法自动检测 EEG 不活动期(爆发间期)。计算爆发间期比(IBR,移动时间窗口 600s 内 EEG 不活动的百分比)和平均爆发间期长度。使用 IBR,自动检测不连续背景活动(高 IBR 期)和连续背景活动(低 IBR 期),并计算每个记录期间的平均长度。使用回归和多变量分析对数据进行分析。

结果

对 18 名婴儿的 79 次记录进行了分析。所有记录均显示 EEG 不连续性呈周期性模式。随着 PMA 的增加,IBR(R(2)=0.64;p<0.001)、爆发间期长度(R(2)=0.43;p<0.001)和不连续活动的长度(R(2)=0.38;p<0.001)降低,而连续活动增加(R(2)=0.50;p<0.001)。多变量分析表明,所有脑电图不连续性参数均受胎龄和生后年龄的同等影响。

结论

使用自动算法分析早产儿的脑电图背景活动是可行的,并且显示出几个脑电图衍生参数的成熟变化。IBR 的周期性模式提示早产儿的大脑组织。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验