Suppr超能文献

噬菌体 f1 中由单核苷酸替换引起的适合度效应的分布。

Distribution of fitness effects caused by single-nucleotide substitutions in bacteriophage f1.

机构信息

Departament de Genètica, Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, 46980 València, Spain.

出版信息

Genetics. 2010 Jun;185(2):603-9. doi: 10.1534/genetics.110.115162. Epub 2010 Apr 9.

Abstract

Empirical knowledge of the fitness effects of mutations is important for understanding many evolutionary processes, yet this knowledge is often hampered by several sources of measurement error and bias. Most of these problems can be solved using site-directed mutagenesis to engineer single mutations, an approach particularly suited for viruses due to their small genomes. Here, we used this technique to measure the fitness effect of 100 single-nucleotide substitutions in the bacteriophage f1, a filamentous single-strand DNA virus. We found that approximately one-fifth of all mutations are lethal. Viable ones reduced fitness by 11% on average and were accurately described by a log-normal distribution. More than 90% of synonymous substitutions were selectively neutral, while those affecting intergenic regions reduced fitness by 14% on average. Mutations leading to amino acid substitutions had an overall mean deleterious effect of 37%, which increased to 45% for those changing the amino acid polarity. Interestingly, mutations affecting early steps of the infection cycle tended to be more deleterious than those affecting late steps. Finally, we observed at least two beneficial mutations. Our results confirm that high mutational sensitivity is a general property of viruses with small genomes, including RNA and single-strand DNA viruses infecting animals, plants, and bacteria.

摘要

突变适应性的经验知识对于理解许多进化过程非常重要,但这些知识通常受到多种测量误差和偏差的阻碍。这些问题大多可以通过定点诱变来解决,这种方法特别适合于病毒,因为它们的基因组很小。在这里,我们使用该技术测量了丝状单链 DNA 噬菌体 f1 中的 100 个单核苷酸替换的适应性效应。我们发现,大约五分之一的突变是致命的。存活突变平均降低了 11%的适应性,并且可以通过对数正态分布准确描述。超过 90%的同义替换是选择性中性的,而影响基因间区域的替换平均降低了 14%的适应性。导致氨基酸替换的突变总体上具有 37%的有害效应,而改变氨基酸极性的突变则增加到 45%。有趣的是,影响感染周期早期步骤的突变比影响晚期步骤的突变更具危害性。最后,我们观察到至少有两个有益突变。我们的结果证实,高突变敏感性是具有小基因组的病毒的普遍特性,包括感染动物、植物和细菌的 RNA 和单链 DNA 病毒。

相似文献

1
Distribution of fitness effects caused by single-nucleotide substitutions in bacteriophage f1.
Genetics. 2010 Jun;185(2):603-9. doi: 10.1534/genetics.110.115162. Epub 2010 Apr 9.
2
The fitness effects of random mutations in single-stranded DNA and RNA bacteriophages.
PLoS Genet. 2009 Nov;5(11):e1000742. doi: 10.1371/journal.pgen.1000742. Epub 2009 Nov 26.
3
Mutational fitness effects in RNA and single-stranded DNA viruses: common patterns revealed by site-directed mutagenesis studies.
Philos Trans R Soc Lond B Biol Sci. 2010 Jun 27;365(1548):1975-82. doi: 10.1098/rstb.2010.0063.
4
The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus.
Proc Natl Acad Sci U S A. 2004 Jun 1;101(22):8396-401. doi: 10.1073/pnas.0400146101. Epub 2004 May 24.
5
The fitness effects of synonymous mutations in DNA and RNA viruses.
Mol Biol Evol. 2012 Jan;29(1):17-20. doi: 10.1093/molbev/msr179. Epub 2011 Jul 18.
6
Distribution of fitness and virulence effects caused by single-nucleotide substitutions in Tobacco Etch virus.
J Virol. 2007 Dec;81(23):12979-84. doi: 10.1128/JVI.00524-07. Epub 2007 Sep 26.
8
HIV-1 protease catalytic efficiency effects caused by random single amino acid substitutions.
Mol Biol Evol. 2007 Feb;24(2):382-7. doi: 10.1093/molbev/msl168. Epub 2006 Nov 7.
10
Crossing fitness valleys via double substitutions within codons.
BMC Biol. 2019 Dec 16;17(1):105. doi: 10.1186/s12915-019-0727-4.

引用本文的文献

1
Mutation rate variability in viral populations: implications for lethal mutagenesis.
bioRxiv. 2025 May 21:2025.05.16.654520. doi: 10.1101/2025.05.16.654520.
2
Functional synonymous mutations and their evolutionary consequences.
Nat Rev Genet. 2025 May 20. doi: 10.1038/s41576-025-00850-1.
3
High-throughput method characterizes hundreds of previously unknown antibiotic resistance mutations.
Nat Commun. 2025 Jan 17;16(1):780. doi: 10.1038/s41467-025-56050-2.
4
Fit-Seq2.0: An Improved Software for High-Throughput Fitness Measurements Using Pooled Competition Assays.
J Mol Evol. 2023 Jun;91(3):334-344. doi: 10.1007/s00239-023-10098-0. Epub 2023 Mar 6.
5
Fitness and Functional Landscapes of the E. coli RNase III Gene rnc.
Mol Biol Evol. 2023 Mar 4;40(3). doi: 10.1093/molbev/msad047.
6
COVID-19: A state of art on immunological responses, mutations, and treatment modalities in riposte.
J Infect Public Health. 2023 Feb;16(2):233-249. doi: 10.1016/j.jiph.2022.12.019. Epub 2022 Dec 29.
7
The High Mutational Sensitivity of ccdA Antitoxin Is Linked to Codon Optimality.
Mol Biol Evol. 2022 Oct 7;39(10). doi: 10.1093/molbev/msac187.
9
Haplotype-based inference of the distribution of fitness effects.
Genetics. 2022 Apr 4;220(4). doi: 10.1093/genetics/iyac002.
10
A Two-Level, Intramutant Spectrum Haplotype Profile of Hepatitis C Virus Revealed by Self-Organized Maps.
Microbiol Spectr. 2021 Dec 22;9(3):e0145921. doi: 10.1128/Spectrum.01459-21. Epub 2021 Nov 10.

本文引用的文献

1
Mutational fitness effects in RNA and single-stranded DNA viruses: common patterns revealed by site-directed mutagenesis studies.
Philos Trans R Soc Lond B Biol Sci. 2010 Jun 27;365(1548):1975-82. doi: 10.1098/rstb.2010.0063.
2
The fitness effects of random mutations in single-stranded DNA and RNA bacteriophages.
PLoS Genet. 2009 Nov;5(11):e1000742. doi: 10.1371/journal.pgen.1000742. Epub 2009 Nov 26.
3
Evolution at a high imposed mutation rate: adaptation obscures the load in phage T7.
Genetics. 2010 Jan;184(1):221-32. doi: 10.1534/genetics.109.108803. Epub 2009 Oct 26.
4
Distribution of fitness and virulence effects caused by single-nucleotide substitutions in Tobacco Etch virus.
J Virol. 2007 Dec;81(23):12979-84. doi: 10.1128/JVI.00524-07. Epub 2007 Sep 26.
5
The distribution of fitness effects of new mutations.
Nat Rev Genet. 2007 Aug;8(8):610-8. doi: 10.1038/nrg2146.
6
Understanding the evolutionary fate of finite populations: the dynamics of mutational effects.
PLoS Biol. 2007 Apr;5(4):e94. doi: 10.1371/journal.pbio.0050094.
7
Theory of lethal mutagenesis for viruses.
J Virol. 2007 Mar;81(6):2930-9. doi: 10.1128/JVI.01624-06. Epub 2007 Jan 3.
8
Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection.
Mol Syst Biol. 2006;2:2006.0008. doi: 10.1038/msb4100050. Epub 2006 Feb 21.
9
Mechanisms of genetic robustness in RNA viruses.
EMBO Rep. 2006 Feb;7(2):168-73. doi: 10.1038/sj.embor.7400636.
10
Distributions of beneficial fitness effects in RNA.
Genetics. 2005 Aug;170(4):1449-57. doi: 10.1534/genetics.104.039248. Epub 2005 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验