Elena Santiago F, Carrasco Purificación, Daròs José-Antonio, Sanjuán Rafael
Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Avenida de los Naranjos s/n, 46022 València, Spain.
EMBO Rep. 2006 Feb;7(2):168-73. doi: 10.1038/sj.embor.7400636.
Two key features of RNA viruses are their compacted genomes and their high mutation rate. Accordingly, deleterious mutations are common and have an enormous impact on viral fitness. In their multicellular hosts, robustness can be achieved by genomic redundancy, including gene duplication, diploidy, alternative metabolic pathways and biochemical buffering mechanisms. However, here we review evidence suggesting that during RNA virus evolution, alternative robustness mechanisms may have been selected. After briefly describing how genetic robustness can be quantified, we discuss mechanisms of intrinsic robustness arising as consequences of RNA-genome architecture, replication peculiarities and quasi-species population dynamics. These intrinsic robustness mechanisms operate efficiently at the population level, despite the mutational sensitivity shown by individual genomes. Finally, we discuss the possibility that viruses might exploit cellular buffering mechanisms for their own benefit, producing a sort of extrinsic robustness.
RNA病毒的两个关键特征是其紧凑的基因组和高突变率。因此,有害突变很常见,并对病毒适应性产生巨大影响。在它们的多细胞宿主中,可以通过基因组冗余来实现稳健性,包括基因复制、二倍体、替代代谢途径和生化缓冲机制。然而,在这里我们回顾了一些证据,表明在RNA病毒进化过程中,可能选择了其他稳健性机制。在简要描述了如何量化遗传稳健性之后,我们讨论了由于RNA基因组结构、复制特性和准种群体动态而产生的内在稳健性机制。尽管单个基因组表现出突变敏感性,但这些内在稳健性机制在群体水平上有效地发挥作用。最后,我们讨论了病毒可能为自身利益利用细胞缓冲机制的可能性,从而产生一种外在稳健性。