Dept. of Biomedical Engineering, Johns Hopkins Univ. School of Medicine, 720 Rutland Ave., 613 Traylor Research Bldg., Baltimore, MD 21205, USA.
Am J Physiol Heart Circ Physiol. 2010 Jun;298(6):H2174-91. doi: 10.1152/ajpheart.00365.2009. Epub 2010 Apr 9.
Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis, the growth of new capillaries from existing microvasculature. In peripheral arterial disease (PAD), lower extremity muscle ischemia develops downstream of atherosclerotic obstruction. A working hypothesis proposed that the maladaptive overexpression of soluble VEGF receptor 1 (sVEGFR1) in ischemic muscle tissues, and its subsequent antagonism of VEGF bioactivity, may contribute to the deficient angiogenic response in PAD, as well as the limited success of therapeutic angiogenesis strategies where exogenous VEGF genes/proteins are delivered. The objectives of this study were to develop a computational framework for simulating the systemic distributions of VEGF and sVEGFR1 (e.g., intramuscular vs. circulating, free vs. complexed) as observed in human PAD patients and to serve as a platform for the systematic optimization of diagnostic tools and therapeutic strategies. A three-compartment model was constructed, dividing the human body into the ischemic calf muscle, blood, and the rest of the body, connected through macromolecular biotransport processes. Detailed molecular interactions between VEGF, sVEGFR1, endothelial surface receptors (VEGFR1, VEGFR2, NRP1), and interstitial matrix sites were modeled. Our simulation results did not support a simultaneous decrease in plasma sVEGFR1 during PAD-associated elevations in plasma VEGF reported in literature. Furthermore, despite the overexpression in sVEGFR1, our PAD control demonstrated increased proangiogenic signaling complex formation, relative to our previous healthy control, due to sizeable upregulations in VEGFR2 and VEGF expression, thus leaving open the possibility that impaired angiogenesis in PAD may be rooted in signaling pathway disruptions downstream of ligand-receptor binding.
血管内皮生长因子(VEGF)是血管生成的关键调节剂,即现有微血管系统中新毛细血管的生长。在周围动脉疾病(PAD)中,下肢肌肉缺血发生在动脉粥样硬化阻塞的下游。一个工作假设提出,在缺血性肌肉组织中可溶性血管内皮生长因子受体 1(sVEGFR1)的适应性过表达,以及其对 VEGF 生物活性的后续拮抗作用,可能导致 PAD 中的血管生成反应不足,以及外源性 VEGF 基因/蛋白递送的治疗性血管生成策略的成功有限。本研究的目的是开发一种计算框架,用于模拟 VEGF 和 sVEGFR1(例如,肌肉内与循环,游离与复合物)在人类 PAD 患者中的系统分布,并作为系统优化诊断工具和治疗策略的平台。构建了一个三腔室模型,将人体分为缺血性小腿肌肉、血液和身体其他部位,通过大分子生物转运过程连接。详细的分子相互作用模型包括 VEGF、sVEGFR1、内皮表面受体(VEGFR1、VEGFR2、NRP1)和细胞外基质部位之间的相互作用。我们的模拟结果不支持文献中报道的与 PAD 相关的血浆 VEGF 升高时同时降低血浆 sVEGFR1 的情况。此外,尽管 sVEGFR1 过表达,但与我们之前的健康对照组相比,我们的 PAD 对照组表现出增加的促血管生成信号复合物形成,这归因于 VEGFR2 和 VEGF 表达的大量上调,因此,不排除 PAD 中血管生成受损可能源于配体-受体结合下游的信号通路中断。