Suppr超能文献

血管内皮生长因子和可溶性血管内皮生长因子受体-1(sFlt-1)在周围动脉疾病中的分布:一种计算机模型。

VEGF and soluble VEGF receptor-1 (sFlt-1) distributions in peripheral arterial disease: an in silico model.

机构信息

Dept. of Biomedical Engineering, Johns Hopkins Univ. School of Medicine, 720 Rutland Ave., 613 Traylor Research Bldg., Baltimore, MD 21205, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2010 Jun;298(6):H2174-91. doi: 10.1152/ajpheart.00365.2009. Epub 2010 Apr 9.

Abstract

Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis, the growth of new capillaries from existing microvasculature. In peripheral arterial disease (PAD), lower extremity muscle ischemia develops downstream of atherosclerotic obstruction. A working hypothesis proposed that the maladaptive overexpression of soluble VEGF receptor 1 (sVEGFR1) in ischemic muscle tissues, and its subsequent antagonism of VEGF bioactivity, may contribute to the deficient angiogenic response in PAD, as well as the limited success of therapeutic angiogenesis strategies where exogenous VEGF genes/proteins are delivered. The objectives of this study were to develop a computational framework for simulating the systemic distributions of VEGF and sVEGFR1 (e.g., intramuscular vs. circulating, free vs. complexed) as observed in human PAD patients and to serve as a platform for the systematic optimization of diagnostic tools and therapeutic strategies. A three-compartment model was constructed, dividing the human body into the ischemic calf muscle, blood, and the rest of the body, connected through macromolecular biotransport processes. Detailed molecular interactions between VEGF, sVEGFR1, endothelial surface receptors (VEGFR1, VEGFR2, NRP1), and interstitial matrix sites were modeled. Our simulation results did not support a simultaneous decrease in plasma sVEGFR1 during PAD-associated elevations in plasma VEGF reported in literature. Furthermore, despite the overexpression in sVEGFR1, our PAD control demonstrated increased proangiogenic signaling complex formation, relative to our previous healthy control, due to sizeable upregulations in VEGFR2 and VEGF expression, thus leaving open the possibility that impaired angiogenesis in PAD may be rooted in signaling pathway disruptions downstream of ligand-receptor binding.

摘要

血管内皮生长因子(VEGF)是血管生成的关键调节剂,即现有微血管系统中新毛细血管的生长。在周围动脉疾病(PAD)中,下肢肌肉缺血发生在动脉粥样硬化阻塞的下游。一个工作假设提出,在缺血性肌肉组织中可溶性血管内皮生长因子受体 1(sVEGFR1)的适应性过表达,以及其对 VEGF 生物活性的后续拮抗作用,可能导致 PAD 中的血管生成反应不足,以及外源性 VEGF 基因/蛋白递送的治疗性血管生成策略的成功有限。本研究的目的是开发一种计算框架,用于模拟 VEGF 和 sVEGFR1(例如,肌肉内与循环,游离与复合物)在人类 PAD 患者中的系统分布,并作为系统优化诊断工具和治疗策略的平台。构建了一个三腔室模型,将人体分为缺血性小腿肌肉、血液和身体其他部位,通过大分子生物转运过程连接。详细的分子相互作用模型包括 VEGF、sVEGFR1、内皮表面受体(VEGFR1、VEGFR2、NRP1)和细胞外基质部位之间的相互作用。我们的模拟结果不支持文献中报道的与 PAD 相关的血浆 VEGF 升高时同时降低血浆 sVEGFR1 的情况。此外,尽管 sVEGFR1 过表达,但与我们之前的健康对照组相比,我们的 PAD 对照组表现出增加的促血管生成信号复合物形成,这归因于 VEGFR2 和 VEGF 表达的大量上调,因此,不排除 PAD 中血管生成受损可能源于配体-受体结合下游的信号通路中断。

相似文献

1
VEGF and soluble VEGF receptor-1 (sFlt-1) distributions in peripheral arterial disease: an in silico model.
Am J Physiol Heart Circ Physiol. 2010 Jun;298(6):H2174-91. doi: 10.1152/ajpheart.00365.2009. Epub 2010 Apr 9.
2
3
Skeletal muscle VEGF gradients in peripheral arterial disease: simulations of rest and exercise.
Am J Physiol Heart Circ Physiol. 2007 Dec;293(6):H3740-9. doi: 10.1152/ajpheart.00009.2007. Epub 2007 Sep 21.
4
Computational kinetic model of VEGF trapping by soluble VEGF receptor-1: effects of transendothelial and lymphatic macromolecular transport.
Physiol Genomics. 2009 Jun 10;38(1):29-41. doi: 10.1152/physiolgenomics.00031.2009. Epub 2009 Apr 7.
6
VEGFR1 and VEGFR2 in Alzheimer's Disease.
J Alzheimers Dis. 2018;61(2):741-752. doi: 10.3233/JAD-170745.
7
VEGF165b Modulates Endothelial VEGFR1-STAT3 Signaling Pathway and Angiogenesis in Human and Experimental Peripheral Arterial Disease.
Circ Res. 2017 Jan 20;120(2):282-295. doi: 10.1161/CIRCRESAHA.116.309516. Epub 2016 Dec 14.
9
Antiangiogenic VEGFb Regulates Macrophage Polarization via S100A8/S100A9 in Peripheral Artery Disease.
Circulation. 2019 Jan 8;139(2):226-242. doi: 10.1161/CIRCULATIONAHA.118.034165.
10
Interactions of VEGF isoforms with VEGFR-1, VEGFR-2, and neuropilin in vivo: a computational model of human skeletal muscle.
Am J Physiol Heart Circ Physiol. 2007 Jan;292(1):H459-74. doi: 10.1152/ajpheart.00637.2006. Epub 2006 Sep 15.

引用本文的文献

1
Impact of ligand binding on VEGFR1, VEGFR2, and NRP1 localization in human endothelial cells.
PLoS Comput Biol. 2025 Jul 16;21(7):e1013254. doi: 10.1371/journal.pcbi.1013254. eCollection 2025 Jul.
2
Obesity Alters the Vascular Morphology and VEGF-A Signaling in Adipose Tissue.
FASEB Bioadv. 2025 May 19;7(6):e70018. doi: 10.1096/fba.2025-00027. eCollection 2025 Jun.
3
Mechanistic computational modeling of sFLT1 secretion dynamics.
bioRxiv. 2025 Feb 18:2025.02.12.637983. doi: 10.1101/2025.02.12.637983.
4
Neuropilin-1 in the pathogenesis of preeclampsia, HIV-1, and SARS-CoV-2 infection: A review.
Virus Res. 2022 Oct 2;319:198880. doi: 10.1016/j.virusres.2022.198880. Epub 2022 Jul 26.
5
How VEGF-A and its splice variants affect breast cancer development - clinical implications.
Cell Oncol (Dordr). 2022 Apr;45(2):227-239. doi: 10.1007/s13402-022-00665-w. Epub 2022 Mar 18.
7
Systems biology of angiogenesis signaling: Computational models and omics.
WIREs Mech Dis. 2022 Jul;14(4):e1550. doi: 10.1002/wsbm.1550. Epub 2021 Dec 30.
8
VASCULAR-1 and VASCULAR-2 as a New Potential Angiogenesis and Endothelial Dysfunction Markers in Peripheral Arterial Disease.
Clin Appl Thromb Hemost. 2019 Jan-Dec;25:1076029619877440. doi: 10.1177/1076029619877440.
9
Computational Modeling to Quantify the Contributions of VEGFR1, VEGFR2, and Lateral Inhibition in Sprouting Angiogenesis.
Front Physiol. 2019 Mar 27;10:288. doi: 10.3389/fphys.2019.00288. eCollection 2019.
10
Context-dependent regulation of receptor tyrosine kinases: Insights from systems biology approaches.
Wiley Interdiscip Rev Syst Biol Med. 2019 Mar;11(2):e1437. doi: 10.1002/wsbm.1437. Epub 2018 Sep 26.

本文引用的文献

1
Regulation of vascularization by hypoxia-inducible factor 1.
Ann N Y Acad Sci. 2009 Oct;1177:2-8. doi: 10.1111/j.1749-6632.2009.05032.x.
2
A systems biology perspective on sVEGFR1: its biological function, pathogenic role and therapeutic use.
J Cell Mol Med. 2010 Mar;14(3):528-52. doi: 10.1111/j.1582-4934.2009.00941.x. Epub 2009 Oct 16.
3
The role of biomarkers and genetics in peripheral arterial disease.
J Am Coll Cardiol. 2009 Sep 29;54(14):1228-37. doi: 10.1016/j.jacc.2009.04.081.
4
5
Computational kinetic model of VEGF trapping by soluble VEGF receptor-1: effects of transendothelial and lymphatic macromolecular transport.
Physiol Genomics. 2009 Jun 10;38(1):29-41. doi: 10.1152/physiolgenomics.00031.2009. Epub 2009 Apr 7.
6
Multiscale models of angiogenesis.
IEEE Eng Med Biol Mag. 2009 Mar-Apr;28(2):14-31. doi: 10.1109/MEMB.2009.931791.
7
A compartment model of VEGF distribution in blood, healthy and diseased tissues.
BMC Syst Biol. 2008 Aug 19;2:77. doi: 10.1186/1752-0509-2-77.
9
Systems biology of vascular endothelial growth factors.
Microcirculation. 2008 Nov;15(8):715-38. doi: 10.1080/10739680802095964.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验