Sarabipour Sarvenaz, Kinghorn Karina, Quigley Kaitlyn M, Kovacs-Kasa Anita, Annex Brian H, Bautch Victoria L, Mac Gabhann Feilim
Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America.
Center for Cell Analysis & Modeling, Center for Vascular Biology, Department of Cell Biology, Department of Biomedical Engineering, University of Connecticut School of Medicine, Farmington, Connecticut, United States of America.
PLoS Comput Biol. 2025 Jul 16;21(7):e1013254. doi: 10.1371/journal.pcbi.1013254. eCollection 2025 Jul.
The vascular endothelial growth factor receptors (VEGFRs) bind to cognate ligands to facilitate signaling pathways critical for angiogenesis, the growth of new capillaries from existing vasculature. Intracellular trafficking regulates the availability of receptors on the cell surface to bind ligands, which regulate activation, and the movement of activated receptors between the surface and intracellular pools, where they can initiate different signaling pathways. Using experimental data and computational modeling, we recently demonstrated and quantified the differential trafficking of three VEGF receptors, VEGFR1, VEGFR2, and coreceptor Neuropilin-1 (NRP1). Here, we expand that approach to quantify how the binding of different VEGF ligands alters the trafficking of these VEGF receptors and demonstrate the consequences of receptor localization and ligand binding on the localization and dynamics of signal initiation complexes. We include simulations of four different splice isoforms of VEGF-A and PLGF, each of which binds to different combinations of the VEGF receptors, and we use new experimental data for two of these ligands to parameterize and validate our model. We show that VEGFR2 trafficking is altered in response to ligand binding, but that trafficking of VEGFR1 is not; we also show that the altered trafficking can be explained by a single mechanistic process, increased internalization of the VEGFR2 receptor when bound to ligand; other processes are unaffected. We further show that even though the canonical view of receptor tyrosine kinases is of activation on the cell surface, most of the ligand-receptor complexes for both VEGFR1 and VEGFR2 are intracellular. We also explore the competition between the receptors for ligand binding, the so-called 'decoy effect', and show that while in vitro on the cell surface minimal such effect would be observed, inside the cell the effect can be substantial and may influence signaling. We term this location dependence the 'reservoir effect' as the size of the local ligand reservoir (large outside the cell, small inside the cell) plays an integral role in the receptor-receptor competition. These results expand our understanding of receptor-ligand trafficking dynamics and are critical for the design of therapeutic agents to regulate ligand availability to VEGFR1 and hence VEGF receptor signaling in angiogenesis.
血管内皮生长因子受体(VEGFRs)与同源配体结合,以促进对血管生成至关重要的信号通路,即从现有脉管系统生长出新的毛细血管。细胞内运输调节细胞表面受体结合配体的可用性,配体调节受体激活,以及激活的受体在表面和细胞内池之间的移动,在细胞内池它们可以启动不同的信号通路。利用实验数据和计算模型,我们最近证明并量化了三种VEGF受体VEGFR1、VEGFR2和共受体神经纤毛蛋白-1(NRP1)的差异运输。在此,我们扩展该方法以量化不同VEGF配体的结合如何改变这些VEGF受体的运输,并证明受体定位和配体结合对信号起始复合物的定位和动力学的影响。我们包括了VEGF-A和PLGF四种不同剪接异构体的模拟,每种异构体与VEGF受体的不同组合结合,并且我们使用其中两种配体的新实验数据来参数化和验证我们的模型。我们表明,VEGFR2的运输因配体结合而改变,但VEGFR1的运输不受影响;我们还表明,运输的改变可以由一个单一的机制过程来解释,即当与配体结合时VEGFR2受体内化增加;其他过程不受影响。我们进一步表明,尽管受体酪氨酸激酶的经典观点是在细胞表面激活,但VEGFR1和VEGFR2的大多数配体-受体复合物都在细胞内。我们还探讨了受体之间对配体结合的竞争,即所谓的“诱饵效应”,并表明虽然在体外细胞表面观察到的这种效应最小,但在细胞内这种效应可能很大并且可能影响信号传导。我们将这种位置依赖性称为“储存库效应”,因为局部配体储存库的大小(细胞外大,细胞内小)在受体-受体竞争中起着不可或缺的作用。这些结果扩展了我们对受体-配体运输动力学的理解,对于设计调节VEGFR1配体可用性从而调节血管生成中VEGF受体信号传导的治疗药物至关重要。