Suppr超能文献

4D-CT 中因不规则呼吸导致的肿瘤大小和位置变化:一项模拟研究。

Variations in tumor size and position due to irregular breathing in 4D-CT: a simulation study.

机构信息

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

Med Phys. 2010 Mar;37(3):1254-60. doi: 10.1118/1.3298007.

Abstract

PURPOSE

To estimate the position and volume errors in 4D-CT caused by irregular breathing.

METHODS

A virtual 4D-CT scanner was designed to reproduce axial mode scans with retrospective resorting. This virtual scanner creates an artificial spherical tumor based on the specifications of the user, and recreates images that might be produced by a 4D-CT scanner using a patient breathing waveform. 155 respiratory waveforms of patients were used to test the variability of 4D-CT scans. Each breathing waveform was normalized and scaled to 1, 2, and 3 cm peak-to-peak motion, and artificial tumors with 2 and 4 cm radius were simulated for each scaled waveform. The center of mass and volume of resorted 4D-CT images were calculated and compared to the expected values of center of mass and volume for the artificial tumor. Intrasubject variability was investigated by running the virtual scanner over different subintervals of each patient's breathing waveform.

RESULTS

The average error in the center of mass location of an artificial tumor was less than 2 mm standard deviation for 2 cm motion. The corresponding average error in volume was less than 4%. In the worst-case scenarios, a center of mass error of 1.0 cm standard deviation and volume errors of 30%-60% at inhale were found. Systematic errors were observed in a subset of patients due to irregular breathing, and these errors were more pronounced when the tumor volume is smaller.

CONCLUSIONS

Irregular breathing during 4D-CT simulation causes systematic errors in volume and center of mass measurements. These errors are small but depend on the tumor size, motion amplitude, and degree of breathing irregularity.

摘要

目的

估计不规则呼吸引起的 4D-CT 位置和体积误差。

方法

设计了一个虚拟的 4D-CT 扫描仪,用于通过回顾性重排来模拟轴向模式扫描。该虚拟扫描仪基于用户规格创建一个人工球形肿瘤,并使用患者呼吸波形来重建可能由 4D-CT 扫描仪产生的图像。使用 155 个患者呼吸波形来测试 4D-CT 扫描的可变性。每个呼吸波形都经过归一化和缩放,以达到 1、2 和 3cm 峰到峰运动,并针对每个缩放波形模拟具有 2 和 4cm 半径的人工肿瘤。计算重排 4D-CT 图像的质心和体积,并将其与人工肿瘤的质心和体积预期值进行比较。通过在每个患者呼吸波形的不同子间隔上运行虚拟扫描仪来研究个体内变异性。

结果

对于 2cm 运动,人工肿瘤质心位置的平均误差小于 2mm 标准差。相应的体积平均误差小于 4%。在最坏情况下,发现质心误差为 1.0cm 标准差,吸入时体积误差为 30%-60%。由于不规则呼吸,在一部分患者中观察到系统误差,并且当肿瘤体积较小时,这些误差更为明显。

结论

4D-CT 模拟过程中的不规则呼吸会导致体积和质心测量的系统误差。这些误差虽然较小,但取决于肿瘤大小、运动幅度和呼吸不规则程度。

相似文献

3
Impact of motion velocity on four-dimensional target volumes: a phantom study.
Med Phys. 2009 May;36(5):1610-7. doi: 10.1118/1.3110073.
4
Fusion of respiration-correlated PET and CT scans: correlated lung tumour motion in anatomical and functional scans.
Phys Med Biol. 2005 Apr 7;50(7):1569-83. doi: 10.1088/0031-9155/50/7/017. Epub 2005 Mar 22.
5
Comparison of setup error using different reference images: a phantom and lung cancer patients study.
Med Dosim. 2012 Spring;37(1):47-52. doi: 10.1016/j.meddos.2011.01.001. Epub 2011 Jul 8.
6
Lung deformation estimation and four-dimensional CT lung reconstruction.
Acad Radiol. 2006 Sep;13(9):1082-92. doi: 10.1016/j.acra.2006.05.004.

引用本文的文献

2
Individualized breathing trace quality assurance for lung radiotherapy patients undergoing 4DCT simulation.
J Appl Clin Med Phys. 2023 Jun;24(6):e13929. doi: 10.1002/acm2.13929. Epub 2023 Feb 20.
3
A new method for assessing lung tumor motion in radiotherapy using dynamic chest radiography.
J Appl Clin Med Phys. 2022 Oct;23(10):e13736. doi: 10.1002/acm2.13736. Epub 2022 Aug 5.
4
4DCT and VMAT for lung patients with irregular breathing.
J Appl Clin Med Phys. 2022 Jan;23(1):e13453. doi: 10.1002/acm2.13453. Epub 2021 Nov 24.
5
Investigating the minimum scan parameters required to generate free-breathing motion artefact-free fast-helical CT.
Br J Radiol. 2018 Feb;91(1082):20170597. doi: 10.1259/bjr.20170597. Epub 2017 Nov 21.
6
Magnetic resonance imaging in lung: a review of its potential for radiotherapy.
Br J Radiol. 2016;89(1060):20150431. doi: 10.1259/bjr.20150431. Epub 2016 Feb 3.
7
Technical Note: Simulation of 4DCT tumor motion measurement errors.
Med Phys. 2015 Oct;42(10):6084-9. doi: 10.1118/1.4931416.
8
Prediction error and required internal margin provided for irregular respiratory movements: a phantom study.
Jpn J Radiol. 2015 Jun;33(6):303-10. doi: 10.1007/s11604-015-0418-1. Epub 2015 Apr 16.
10
Dynamic simulation of motion effects in IMAT lung SBRT.
Radiat Oncol. 2014 Nov 1;9:225. doi: 10.1186/s13014-014-0225-3.

本文引用的文献

2
Prospective displacement and velocity-based cine 4D CT.
Med Phys. 2008 Oct;35(10):4501-12. doi: 10.1118/1.2977539.
3
Retrospective analysis of artifacts in four-dimensional CT images of 50 abdominal and thoracic radiotherapy patients.
Int J Radiat Oncol Biol Phys. 2008 Nov 15;72(4):1250-8. doi: 10.1016/j.ijrobp.2008.06.1937. Epub 2008 Sep 25.
4
Quantitative assessment of four-dimensional computed tomography image acquisition quality.
J Appl Clin Med Phys. 2007 Jun 29;8(3):1-20. doi: 10.1120/jacmp.v8i3.2362.
5
Phase and amplitude binning for 4D-CT imaging.
Phys Med Biol. 2007 Jun 21;52(12):3515-29. doi: 10.1088/0031-9155/52/12/012. Epub 2007 May 18.
6
The impact of temporal inaccuracies on 4DCT image quality.
Med Phys. 2007 May;34(5):1615-22. doi: 10.1118/1.2717404.
7
Assessing respiration-induced tumor motion and internal target volume using four-dimensional computed tomography for radiotherapy of lung cancer.
Int J Radiat Oncol Biol Phys. 2007 Jun 1;68(2):531-40. doi: 10.1016/j.ijrobp.2006.12.066. Epub 2007 Mar 29.
8
The management of respiratory motion in radiation oncology report of AAPM Task Group 76.
Med Phys. 2006 Oct;33(10):3874-900. doi: 10.1118/1.2349696.
10
Improving retrospective sorting of 4D computed tomography data.
Med Phys. 2006 Feb;33(2):377-9. doi: 10.1118/1.2150780.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验