Suppr超能文献

张量 Minkowski 函数和各向异性度量在平面模式中的应用。

Tensorial Minkowski functionals and anisotropy measures for planar patterns.

机构信息

Institut für Theoretische Physik I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany.

出版信息

J Microsc. 2010 Apr 1;238(1):57-74. doi: 10.1111/j.1365-2818.2009.03331.x.

Abstract

Quantitative measures for anisotropic characteristics of spatial structure are needed when relating the morphology of microstructured heterogeneous materials to tensorial physical properties such as elasticity, permeability and conductance. Tensor-valued Minkowski functionals, defined in the framework of integral geometry, provide a concise set of descriptors of anisotropic morphology. In this article, we describe the robust computation of these measures for microscopy images and polygonal shapes. We demonstrate their relevance for shape description, their versatility and their robustness by applying them to experimental data sets, specifically microscopy data sets of non-equilibrium stationary Turing patterns and the shapes of ice grains from Antarctic cores.

摘要

当需要将微结构不均匀材料的形态与各向异性物理性质(如弹性、渗透性和电导率)相关联时,需要对空间结构的各向异性特征进行定量度量。在积分几何的框架下,张量值 Minkowski 函数提供了一组简洁的各向异性形态描述符。在本文中,我们描述了针对显微镜图像和多边形形状的这些度量的稳健计算。我们通过将它们应用于实验数据集(特别是非平衡稳定 Turing 模式的显微镜数据集和南极岩芯中冰粒的形状),展示了它们在形状描述、多功能性和稳健性方面的相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验