Suppr超能文献

三维结构分析:Minkowski 函数的灵敏度。

3D structural analysis: sensitivity of Minkowski functionals.

机构信息

School of Petroleum Engineering, University of New South Wales, Sydney, Australia.

出版信息

J Microsc. 2010 Dec;240(3):181-96. doi: 10.1111/j.1365-2818.2010.03395.x.

Abstract

The Minkowski functionals, a family of statistical measures based on the Euler-Poincaré characteristic of n-dimensional space, are the complete set of additive morphological measures and can be simply calculated from local contributions. As such, they have found a wide range of applications. We consider the effects of distortions (drift, noise and blurring) on the morphological properties of complex random models, representative of a wide range of structure. Such distortions arise experimentally in imaging techniques due to diffraction, absorption and sample drift. The question is asked, how critically these distortions effect image quality as measured by the Minkowski functionals. Defining a length scale based on the two-point correlation function, we consider how distortion at different scales can lead to quantitative errors in morphological measures.

摘要

闵可夫斯基函数,基于 n 维空间的欧拉-庞加莱特征的统计量族,是完整的加性形态学度量集,可以从局部贡献中简单计算出来。因此,它们得到了广泛的应用。我们考虑了扭曲(漂移、噪声和模糊)对复杂随机模型形态特性的影响,这些模型代表了广泛的结构。由于衍射、吸收和样品漂移,这些扭曲在成像技术中会在实验中出现。问题是,这些扭曲会如何严重影响闵可夫斯基函数测量的图像质量。基于两点相关函数定义长度标度,我们考虑了不同尺度的扭曲如何导致形态测量的定量误差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验