University of Vermont, Department of Molecular Physiology and Biophysics, Burlington, VT 05405, USA.
J Struct Biol. 2010 Jul;171(1):18-30. doi: 10.1016/j.jsb.2010.04.002. Epub 2010 Apr 10.
We have developed a new method for classifying 3D reconstructions with missing data obtained by electron microscopy techniques. The method is based on principal component analysis (PCA) combined with expectation maximization. The missing data, together with the principal components, are treated as hidden variables that are estimated by maximizing a likelihood function. PCA in 3D is similar to PCA for 2D image analysis. A lower dimensional subspace of significant features is selected, into which the data are projected, and if desired, subsequently classified. In addition, our new algorithm estimates the missing data for each individual volume within the lower dimensional subspace. Application to both a large model data set and cryo-electron microscopy experimental data demonstrates the good performance of the algorithm and illustrates its potential for studying macromolecular assemblies with continuous conformational variations.
我们开发了一种新的方法来对通过电子显微镜技术获得的带有缺失数据的 3D 重建进行分类。该方法基于主成分分析(PCA)和期望最大化相结合。缺失的数据与主成分一起被视为隐藏变量,通过最大化似然函数来估计这些变量。3D 中的 PCA 类似于 2D 图像分析中的 PCA。选择具有显著特征的较低维子空间,将数据投影到该子空间中,如果需要,随后对其进行分类。此外,我们的新算法还可以估计较低维子空间中每个单独体积的缺失数据。该算法在大型模型数据集和冷冻电子显微镜实验数据上的应用证明了该算法的良好性能,并说明了其在研究具有连续构象变化的大分子组装体方面的潜力。