Suppr超能文献

葡萄糖控制 MondoA-Mlx 异二聚体的核积累、启动子结合和转录活性。

Glucose controls nuclear accumulation, promoter binding, and transcriptional activity of the MondoA-Mlx heterodimer.

机构信息

Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112-5550, USA.

出版信息

Mol Cell Biol. 2010 Jun;30(12):2887-95. doi: 10.1128/MCB.01613-09. Epub 2010 Apr 12.

Abstract

Maintenance of energy homeostasis is a fundamental requirement for organismal fitness: defective glucose homeostasis underlies numerous metabolic diseases and cancer. At the cellular level, the ability to sense and adapt to changes in intracellular glucose levels is an essential component of this strategy. The basic helix-loop-helix-leucine zipper (bHLHZip) transcription factor complex MondoA-Mlx plays a central role in the transcriptional response to intracellular glucose concentration. MondoA-Mlx complexes accumulate in the nucleus in response to high intracellular glucose concentrations and are required for 75% of glucose-induced transcription. We show here that, rather than simply controlling nuclear accumulation, glucose is required at two additional steps to stimulate the transcription activation function of MondoA-Mlx complexes. Following nuclear accumulation, glucose is required for MondoA-Mlx occupancy at target promoters. Next, glucose stimulates the recruitment of a histone H3 acetyltransferase to promoter-bound MondoA-Mlx to trigger activation of gene expression. Our experiments establish the mechanistic circuitry by which cells sense and respond transcriptionally to various intracellular glucose levels.

摘要

维持能量稳态是机体适应性的基本要求

葡萄糖稳态缺陷是许多代谢性疾病和癌症的基础。在细胞水平上,感知和适应细胞内葡萄糖水平变化的能力是这一策略的重要组成部分。碱性螺旋-环-螺旋-亮氨酸拉链(bHLHZip)转录因子复合物 MondoA-Mlx 在细胞内葡萄糖浓度的转录反应中起着核心作用。MondoA-Mlx 复合物在高细胞内葡萄糖浓度下积累在核内,并且对于 75%的葡萄糖诱导的转录是必需的。我们在这里表明,葡萄糖不仅需要在两个额外的步骤中控制核积累,以刺激 MondoA-Mlx 复合物的转录激活功能。在核积累之后,葡萄糖需要在靶启动子上占据 MondoA-Mlx。接下来,葡萄糖刺激组蛋白 H3 乙酰转移酶募集到结合在启动子上的 MondoA-Mlx 上,从而触发基因表达的激活。我们的实验确定了细胞感知和转录响应各种细胞内葡萄糖水平的机制。

相似文献

1
Glucose controls nuclear accumulation, promoter binding, and transcriptional activity of the MondoA-Mlx heterodimer.
Mol Cell Biol. 2010 Jun;30(12):2887-95. doi: 10.1128/MCB.01613-09. Epub 2010 Apr 12.
2
Glucose sensing by MondoA:Mlx complexes: a role for hexokinases and direct regulation of thioredoxin-interacting protein expression.
Proc Natl Acad Sci U S A. 2008 May 13;105(19):6912-7. doi: 10.1073/pnas.0712199105. Epub 2008 May 5.
3
MondoA-Mlx transcriptional activity is limited by mTOR-MondoA interaction.
Mol Cell Biol. 2015 Jan;35(1):101-10. doi: 10.1128/MCB.00636-14. Epub 2014 Oct 20.
4
A novel heterodimerization domain, CRM1, and 14-3-3 control subcellular localization of the MondoA-Mlx heterocomplex.
Mol Cell Biol. 2002 Dec;22(24):8514-26. doi: 10.1128/MCB.22.24.8514-8526.2002.
5
Glutamine-dependent anapleurosis dictates glucose uptake and cell growth by regulating MondoA transcriptional activity.
Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14878-83. doi: 10.1073/pnas.0901221106. Epub 2009 Aug 17.
7
MondoA senses non-glucose sugars: regulation of thioredoxin-interacting protein (TXNIP) and the hexose transport curb.
J Biol Chem. 2011 Nov 4;286(44):38027-38034. doi: 10.1074/jbc.M111.275503. Epub 2011 Sep 9.
9
Glucose sensing by ChREBP/MondoA-Mlx transcription factors.
Semin Cell Dev Biol. 2012 Aug;23(6):640-7. doi: 10.1016/j.semcdb.2012.02.007. Epub 2012 Mar 3.

引用本文的文献

1
Glucose modulates IRF6 transcription factor dimerization to enable epidermal differentiation.
Cell Stem Cell. 2025 May 1;32(5):795-810.e10. doi: 10.1016/j.stem.2025.02.017. Epub 2025 Mar 21.
2
MondoA and AKI and AKI-to-CKD Transition.
J Am Soc Nephrol. 2024 May 31;35(9):1164-82. doi: 10.1681/ASN.0000000000000414.
3
TXNIP-mediated crosstalk between oxidative stress and glucose metabolism.
PLoS One. 2024 Feb 8;19(2):e0292655. doi: 10.1371/journal.pone.0292655. eCollection 2024.
5
Pancreatic cancer epigenetics: adaptive metabolism reprograms starving primary tumors for widespread metastatic outgrowth.
Cancer Metastasis Rev. 2023 Jun;42(2):389-407. doi: 10.1007/s10555-023-10116-z. Epub 2023 Jun 15.
6
The Function of MondoA and ChREBP Nutrient-Sensing Factors in Metabolic Disease.
Int J Mol Sci. 2023 May 16;24(10):8811. doi: 10.3390/ijms24108811.
7
TXNIP loss expands Myc-dependent transcriptional programs by increasing Myc genomic binding.
PLoS Biol. 2023 Mar 17;21(3):e3001778. doi: 10.1371/journal.pbio.3001778. eCollection 2023 Mar.

本文引用的文献

1
Glutamine-dependent anapleurosis dictates glucose uptake and cell growth by regulating MondoA transcriptional activity.
Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14878-83. doi: 10.1073/pnas.0901221106. Epub 2009 Aug 17.
2
Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes.
Cell. 2009 Sep 4;138(5):1019-31. doi: 10.1016/j.cell.2009.06.049. Epub 2009 Aug 20.
3
Thioredoxin-independent regulation of metabolism by the alpha-arrestin proteins.
J Biol Chem. 2009 Sep 11;284(37):24996-5003. doi: 10.1074/jbc.M109.018093. Epub 2009 Jul 15.
4
Understanding the Warburg effect: the metabolic requirements of cell proliferation.
Science. 2009 May 22;324(5930):1029-33. doi: 10.1126/science.1160809.
6
On the origins of arrestin and rhodopsin.
BMC Evol Biol. 2008 Jul 29;8:222. doi: 10.1186/1471-2148-8-222.
7
Regulation of lipogenesis via BHLHB2/DEC1 and ChREBP feedback looping.
Biochem Biophys Res Commun. 2008 Sep 12;374(1):95-100. doi: 10.1016/j.bbrc.2008.06.101. Epub 2008 Jul 9.
8
Glucose activates ChREBP by increasing its rate of nuclear entry and relieving repression of its transcriptional activity.
J Biol Chem. 2008 Aug 29;283(35):24029-38. doi: 10.1074/jbc.M801539200. Epub 2008 Jun 30.
10
Glucose sensing by MondoA:Mlx complexes: a role for hexokinases and direct regulation of thioredoxin-interacting protein expression.
Proc Natl Acad Sci U S A. 2008 May 13;105(19):6912-7. doi: 10.1073/pnas.0712199105. Epub 2008 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验