克氏锥虫和布氏冈比亚锥虫细胞色素 P45051 与抗真菌药物泊沙康唑和氟康唑结合的结构特征。
Structural characterization of CYP51 from Trypanosoma cruzi and Trypanosoma brucei bound to the antifungal drugs posaconazole and fluconazole.
机构信息
Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America.
出版信息
PLoS Negl Trop Dis. 2010 Apr 6;4(4):e651. doi: 10.1371/journal.pntd.0000651.
BACKGROUND
Chagas Disease is the leading cause of heart failure in Latin America. Current drug therapy is limited by issues of both efficacy and severe side effects. Trypansoma cruzi, the protozoan agent of Chagas Disease, is closely related to two other major global pathogens, Leishmania spp., responsible for leishmaniasis, and Trypansoma brucei, the causative agent of African Sleeping Sickness. Both T. cruzi and Leishmania parasites have an essential requirement for ergosterol, and are thus vulnerable to inhibitors of sterol 14alpha-demethylase (CYP51), which catalyzes the conversion of lanosterol to ergosterol. Clinically employed anti-fungal azoles inhibit ergosterol biosynthesis in fungi, and specific azoles are also effective against both Trypanosoma and Leishmania parasites. However, modification of azoles to enhance efficacy and circumvent potential drug resistance has been problematic for both parasitic and fungal infections due to the lack of structural insights into drug binding.
METHODOLOGY/PRINCIPAL FINDINGS: We have determined the crystal structures for CYP51 from T. cruzi (resolutions of 2.35 A and 2.27 A), and from the related pathogen T. brucei (resolutions of 2.7 A and 2.6 A), co-crystallized with the antifungal drugs fluconazole and posaconazole. Remarkably, both drugs adopt multiple conformations when binding the target. The fluconazole 2,4-difluorophenyl ring flips 180 degrees depending on the H-bonding interactions with the BC-loop. The terminus of the long functional tail group of posaconazole is bound loosely in the mouth of the hydrophobic substrate binding tunnel, suggesting that the major contribution of the tail to drug efficacy is for pharmacokinetics rather than in interactions with the target.
CONCLUSIONS/SIGNIFICANCE: The structures provide new insights into binding of azoles to CYP51 and mechanisms of potential drug resistance. Our studies define in structural detail the CYP51 therapeutic target in T. cruzi, and offer a starting point for rationally designed anti-Chagasic drugs with improved efficacy and reduced toxicity.
背景
恰加斯病是拉丁美洲心力衰竭的主要原因。目前的药物治疗受到疗效和严重副作用的限制。克氏锥虫,恰加斯病的原生动物病原体,与另外两种主要的全球病原体密切相关,即引起利什曼病的利什曼原虫和引起非洲昏睡病的布氏锥虫。克氏锥虫和利什曼原虫都对麦角固醇有基本的需求,因此容易受到固醇 14α-去甲基酶(CYP51)抑制剂的影响,该酶催化羊毛甾醇转化为麦角固醇。临床上使用的抗真菌唑类药物抑制真菌中的麦角固醇生物合成,而特定的唑类药物对锥虫和利什曼原虫寄生虫也有效。然而,由于缺乏对药物结合的结构见解,为了增强疗效和规避潜在的药物耐药性,对寄生虫和真菌感染进行唑类药物的修饰一直存在问题。
方法/主要发现:我们已经确定了来自克氏锥虫(分辨率为 2.35Å 和 2.27Å)和相关病原体布氏锥虫(分辨率为 2.7Å 和 2.6Å)的 CYP51 的晶体结构,这些结构与抗真菌药物氟康唑和泊沙康唑共结晶。值得注意的是,当与靶标结合时,这两种药物都采用了多种构象。氟康唑的 2,4-二氟苯基环根据与 BC 环的氢键相互作用翻转 180 度。泊沙康唑的长功能尾部基团的末端松散地结合在疏水性底物结合隧道的口中,这表明尾部对药物疗效的主要贡献在于药代动力学,而不是与靶标相互作用。
结论/意义:这些结构为唑类药物与 CYP51 结合以及潜在药物耐药性的机制提供了新的见解。我们的研究从结构上详细定义了克氏锥虫中的 CYP51 治疗靶标,并为设计具有更好疗效和降低毒性的新型抗恰加斯病药物提供了起点。