NeuroRegeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America.
PLoS Genet. 2010 Apr 8;6(4):e1000902. doi: 10.1371/journal.pgen.1000902.
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are associated with late-onset, autosomal-dominant, familial Parkinson's disease (PD) and also contribute to sporadic disease. The LRRK2 gene encodes a large protein with multiple domains, including functional Roc GTPase and protein kinase domains. Mutations in LRRK2 most likely cause disease through a toxic gain-of-function mechanism. The expression of human LRRK2 variants in cultured primary neurons induces toxicity that is dependent on intact GTP binding or kinase activities. However, the mechanism(s) underlying LRRK2-induced neuronal toxicity is poorly understood, and the contribution of GTPase and/or kinase activity to LRRK2 pathobiology is not well defined. To explore the pathobiology of LRRK2, we have developed a model of LRRK2 cytotoxicity in the baker's yeast Saccharomyces cerevisiae. Protein domain analysis in this model reveals that expression of GTPase domain-containing fragments of human LRRK2 are toxic. LRRK2 toxicity in yeast can be modulated by altering GTPase activity and is closely associated with defects in endocytic vesicular trafficking and autophagy. These truncated LRRK2 variants induce similar toxicity in both yeast and primary neuronal models and cause similar vesicular defects in yeast as full-length LRRK2 causes in primary neurons. The toxicity induced by truncated LRRK2 variants in yeast acts through a mechanism distinct from toxicity induced by human alpha-synuclein. A genome-wide genetic screen identified modifiers of LRRK2-induced toxicity in yeast including components of vesicular trafficking pathways, which can also modulate the trafficking defects caused by expression of truncated LRRK2 variants. Our results provide insight into the basic pathobiology of LRRK2 and suggest that the GTPase domain may contribute to the toxicity of LRRK2. These findings may guide future therapeutic strategies aimed at attenuating LRRK2-mediated neurodegeneration.
LRRK2 基因中的突变与晚发性、常染色体显性、家族性帕金森病(PD)有关,也与散发性疾病有关。LRRK2 基因编码一种具有多个结构域的大型蛋白质,包括功能性 Roc GTPase 和蛋白激酶结构域。LRRK2 中的突变很可能通过毒性获得性功能机制导致疾病。在培养的原代神经元中表达人类 LRRK2 变体可诱导依赖于完整 GTP 结合或激酶活性的毒性。然而,LRRK2 诱导神经元毒性的机制尚不清楚,GTPase 和/或激酶活性对 LRRK2 病理生物学的贡献也尚未明确界定。为了探索 LRRK2 的病理生物学,我们在酿酒酵母 Saccharomyces cerevisiae 中建立了 LRRK2 细胞毒性模型。该模型中的蛋白结构域分析表明,表达含有 GTPase 结构域的人 LRRK2 片段具有毒性。酵母中 LRRK2 的毒性可以通过改变 GTPase 活性进行调节,并且与内吞小泡运输和自噬缺陷密切相关。这些截断的 LRRK2 变体在酵母和原代神经元模型中都能引起相似的毒性,并在酵母中引起类似于全长 LRRK2 在原代神经元中引起的小泡缺陷。酵母中截断的 LRRK2 变体诱导的毒性通过一种与人类 alpha-突触核蛋白诱导的毒性不同的机制起作用。全基因组遗传筛选鉴定了酵母中 LRRK2 诱导毒性的调节剂,包括小泡运输途径的组成部分,这些调节剂也可以调节截断的 LRRK2 变体表达引起的运输缺陷。我们的研究结果提供了对 LRRK2 基本病理生物学的深入了解,并表明 GTPase 结构域可能导致 LRRK2 的毒性。这些发现可能为旨在减轻 LRRK2 介导的神经退行性变的治疗策略提供指导。