Suppr超能文献

采用低压驱动电泳微芯片上侧壁电极的电容耦合非接触式电导检测系统的特性研究。

Characterization of a capacitance-coupled contactless conductivity detection system with sidewall electrodes on a low-voltage-driven electrophoresis microchip.

机构信息

Chemistry and Chemical Engineering College, Chongqing University, Chongqing 400030, China.

出版信息

Anal Bioanal Chem. 2010 Jun;397(4):1583-93. doi: 10.1007/s00216-010-3675-y. Epub 2010 Apr 13.

Abstract

A new type of capacitance-coupled contactless conductivity detection (C(4)D) system with sidewall electrodes was proposed for integration on a silicon-on-isolator-poly(dimethylsiloxane) (SOI-PDMS) hybrid low-voltage-driven electrophoresis microchip. By a microelectromechanical system process, the sidewall electrodes were fabricated precisely at either side of the separation channel. The area of the capacitor electrodes was the maximum value to improve the detection sensitivity with an enhanced capacitance effect. According to the simulation results, the structural parameters of the sidewall electrodes were determined as 550-microm length, 15-microm width, 80-microm separation distance, and 1-microm isolator thickness. The integrated microdevice with the SOI-PDMS hybrid electrophoresis microchip was very compact and the size was only 15 cm x 15 cm x 10 cm (width x length x height), which permitted miniaturization and portability. The detector performance was evaluated by K(+) testing. The detection limit of the conductivity detector was determined to be 10(-9) and 10(-6) M for K(+) in the static and electric-driven modes, respectively. Finally, the C(4)D was applied to low-voltage-driven electrophoresis on a microchip to carry out real-time measurement of the separation of amino acids. The separations of 10(-4) M lysine and phenylalanine in the low-voltage-driven electrophoresis mode were performed with an electric field of 300 V/cm and were completed in less than 15 min with a resolution of 1.3. The separation efficiency was found to be 1.3 x 10(3) and 2.8 x 10(3) plates for lysine and phenylalanine, respectively, with a migration time reproducibility of 2.7 and 3.2%. The conductivity detection limit of amino acids achieved was 10(-6) M. The proposed method for the construction of a novel C(4)D integrated on an SOI-PDMS hybrid low-voltage-driven electrophoresis microchip showed the most extensive integration and miniaturization of a microdevice, which is a further crucial step toward the realization of the "lab-on-a-chip" concept.

摘要

一种新型的带有侧壁电极的电容耦合非接触式电导检测(C(4)D)系统被提出,用于集成在硅-绝缘体-聚二甲基硅氧烷(SOI-PDMS)混合低电压驱动电泳微芯片上。通过微机电系统工艺,可以精确地在分离通道的两侧制造侧壁电极。电容电极的面积达到最大值,以提高检测灵敏度,并增强电容效应。根据模拟结果,确定了侧壁电极的结构参数为 550 微米长、15 微米宽、80 微米分离距离和 1 微米隔离器厚度。带有 SOI-PDMS 混合电泳微芯片的集成微器件非常紧凑,尺寸仅为 15 cm x 15 cm x 10 cm(宽 x 长 x 高),允许实现小型化和便携化。通过 K(+)测试评估了检测器性能。在静态和电动驱动模式下,电导检测器的检测极限分别确定为 10(-9) 和 10(-6) M 的 K(+)。最后,将 C(4)D 应用于微芯片上的低压驱动电泳,实现了氨基酸分离的实时测量。在 300 V/cm 的电场下,以 10(-4) M 的赖氨酸和苯丙氨酸在低压驱动电泳模式下进行分离,完成时间不到 15 分钟,分辨率为 1.3。赖氨酸和苯丙氨酸的分离效率分别为 1.3 x 10(3) 和 2.8 x 10(3) 板,迁移时间重现性分别为 2.7%和 3.2%。实现的氨基酸检测极限为 10(-6) M。用于构建新型 SOI-PDMS 混合低压驱动电泳微芯片集成 C(4)D 的方法展示了微器件最广泛的集成和小型化,这是实现“片上实验室”概念的重要一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验