Suppr超能文献

利用元预测器从蛋白质序列预测蛋白质-蛋白质相互作用。

Predicting protein-protein interactions from protein sequences using meta predictor.

机构信息

Intelligent Computing Laboratory, Hefei Institute of Intelligent Machines, Chinese Academy of Sciences, P.O. Box 1130, Hefei, Anhui, 230031, China.

出版信息

Amino Acids. 2010 Nov;39(5):1595-9. doi: 10.1007/s00726-010-0588-1. Epub 2010 Apr 13.

Abstract

A novel method is proposed for predicting protein-protein interactions (PPIs) based on the meta approach, which predicts PPIs using support vector machine that combines results by six independent state-of-the-art predictors. Significant improvement in prediction performance is observed, when performed on Saccharomyces cerevisiae and Helicobacter pylori datasets. In addition, we used the final prediction model trained on the PPIs dataset of S. cerevisiae to predict interactions in other species. The results reveal that our meta model is also capable of performing cross-species predictions. The source code and the datasets are available at http://home.ustc.edu.cn/~jfxia/Meta_PPI.html.

摘要

提出了一种新的基于荟萃分析的蛋白质-蛋白质相互作用(PPI)预测方法,该方法使用支持向量机结合六种独立的最新预测器的结果来预测 PPI。在酿酒酵母和幽门螺杆菌数据集上的预测性能得到了显著提高。此外,我们还使用在酿酒酵母 PPI 数据集上训练的最终预测模型来预测其他物种的相互作用。结果表明,我们的荟萃模型也能够进行跨物种预测。源代码和数据集可在 http://home.ustc.edu.cn/~jfxia/Meta_PPI.html 获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验