Suppr超能文献

一种基于桥梁异构信息网络并通过图表示学习的用于家庭医学和初级保健的lncRNA-疾病关联预测工具开发。

A lncRNA-disease association prediction tool development based on bridge heterogeneous information network via graph representation learning for family medicine and primary care.

作者信息

Zhang Ping, Zhang Weihan, Sun Weicheng, Li Li, Xu Jinsheng, Wang Lei, Wong Leon

机构信息

Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China.

Guangxi Key Lab of Human-Machine Interaction and Intelligent Decision, Guangxi Academy of Sciences, Nanning, China.

出版信息

Front Genet. 2023 May 18;14:1084482. doi: 10.3389/fgene.2023.1084482. eCollection 2023.

Abstract

Identification of long non-coding RNAs (lncRNAs) associated with common diseases is crucial for patient self-diagnosis and monitoring of health conditions using artificial intelligence (AI) technology at home. LncRNAs have gained significant attention due to their crucial roles in the pathogenesis of complex human diseases and identifying their associations with diseases can aid in developing diagnostic biomarkers at the molecular level. Computational methods for predicting lncRNA-disease associations (LDAs) have become necessary due to the time-consuming and labor-intensive nature of wet biological experiments in hospitals, enabling patients to access LDAs through their AI terminal devices at any time. Here, we have developed a predictive tool, LDAGRL, for identifying potential LDAs using a bridge heterogeneous information network (BHnet) constructed via Structural Deep Network Embedding (SDNE). The BHnet consists of three types of molecules as bridge nodes to implicitly link the lncRNA with disease nodes and the SDNE is used to learn high-quality node representations and make LDA predictions in a unified graph space. To assess the feasibility and performance of LDAGRL, extensive experiments, including 5-fold cross-validation, comparison with state-of-the-art methods, comparison on different classifiers and comparison of different node feature combinations, were conducted, and the results showed that LDAGRL achieved satisfactory prediction performance, indicating its potential as an effective LDAs prediction tool for family medicine and primary care.

摘要

识别与常见疾病相关的长链非编码RNA(lncRNA)对于患者利用人工智能(AI)技术在家中进行自我诊断和健康状况监测至关重要。lncRNA因其在复杂人类疾病发病机制中的关键作用而备受关注,识别它们与疾病的关联有助于在分子水平上开发诊断生物标志物。由于医院湿生物学实验耗时且费力,预测lncRNA-疾病关联(LDA)的计算方法变得必要,这使得患者能够通过其AI终端设备随时获取LDA信息。在此,我们开发了一种预测工具LDAGRL,用于使用通过结构深度网络嵌入(SDNE)构建的桥接异构信息网络(BHnet)来识别潜在的LDA。BHnet由三种类型的分子作为桥接节点组成,以隐式地将lncRNA与疾病节点连接起来,并且SDNE用于学习高质量的节点表示并在统一的图空间中进行LDA预测。为了评估LDAGRL的可行性和性能,我们进行了广泛的实验,包括五折交叉验证、与现有方法的比较、不同分类器的比较以及不同节点特征组合的比较,结果表明LDAGRL取得了令人满意的预测性能,表明其作为家庭医学和初级保健中一种有效的LDA预测工具的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f8a/10234424/5725b37147f3/fgene-14-1084482-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验