Oliver Melvin J, Cushman John C, Koster Karen L
USDA-ARS Plant Genetics Research Unit, University of Missouri, Columbia, MO, USA.
Methods Mol Biol. 2010;639:3-24. doi: 10.1007/978-1-60761-702-0_1.
Dehydration tolerance in plants is an important but understudied component of the complex phenotype of drought tolerance. Most plants have little capacity to tolerate dehydration; most die at leaf water potentials between -5 and -10 MPa. Some of the non-vascular plants and a small percentage (0.2%) of vascular plants, however, can survive dehydration to -100 MPa and beyond, and it is from studying such plants that we are starting to understand the components of dehydration tolerance in plants. In this chapter we define what dehydration tolerance is and how it can be assessed, important prerequisites to understanding the response of a plant to water loss. The metabolic and mechanical consequences of cellular dehydration in plants prelude a discussion on the role that gene expression responses play in tolerance mechanisms. We finally discuss the key biochemical aspects of tolerance focusing on the roles of carbohydrates, late embryogenesis abundant and heat shock proteins, reactive oxygen scavenging (ROS) pathways, and novel transcription factors. It is clear that we are making significant advances in our understanding of dehydration tolerance and the added stimulus of new model systems will speed our abilities to impact the search for new strategies to improve drought tolerance in major crops.
植物的脱水耐受性是耐旱复杂表型中一个重要但研究不足的组成部分。大多数植物几乎没有耐受脱水的能力;大多数植物在叶片水势介于-5至-10兆帕时就会死亡。然而,一些非维管植物和一小部分(0.2%)维管植物能够在脱水至-100兆帕及更低水势时存活,正是通过研究这些植物,我们才开始了解植物脱水耐受性的组成部分。在本章中,我们定义了什么是脱水耐受性以及如何评估它,这是理解植物对水分流失反应的重要前提。植物细胞脱水的代谢和机械后果为讨论基因表达反应在耐受机制中所起的作用做了铺垫。我们最后讨论耐受性的关键生化方面,重点关注碳水化合物、胚胎后期丰富蛋白和热激蛋白、活性氧清除(ROS)途径以及新型转录因子的作用。显然,我们在对脱水耐受性的理解方面正在取得重大进展,新模型系统带来的额外刺激将加快我们寻找提高主要作物耐旱性新策略的能力。