Suppr超能文献

从头计算模拟乙苯脱氢酶反应机制。

Ab initio modeling of ethylbenzene dehydrogenase reaction mechanism.

机构信息

Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland.

出版信息

J Am Chem Soc. 2010 May 5;132(17):6014-24. doi: 10.1021/ja907208k.

Abstract

Density functional theory calculations were performed to study the mechanism of ethylbenzene oxidation by ethylbenzene dehydrogenase (EBDH). EBDH is a bacterial molybdopterin enzyme capable of stereospecific anaerobic hydroxylation of alkylaromatic compounds to secondary alcohols. It is a key biocatalyst in the metabolism of ethylbenzene-degrading bacteria such as Aromatoleum aromaticum , which converts ethylbenzene to (S)-1-phenylethanol. The recently determined EBDH structure enabled the theoretical description of the ethylbenzene oxidation mechanism. In this work, theoretical calculations and kinetic isotopic experiments were conducted and combined in order to elucidate the reaction mechanism. We considered three aspects: (i) Does the reaction concur with one two-electron or two one-electron transfers? (ii) Is the active site His192 important for the reaction and what is its protonation state? (iii) What catalytic consequences have different possible arrangements of the molybdopterin ligand? The most important outcome of the calculations is that mechanisms involving two one-electron transfers and a radical-type intermediate have lower energy barriers than the corresponding two-electron transfer mechanisms and are, therefore, more plausible. The mechanism involves two transition states: radical-type TS1 associated with the C-H bond cleavage, and carbocation-type TS2 associated with the transfer of the second electron and OH rebound. Using models with protonated and nonprotonated His 192, we conclude that this amino acid takes part in the mechanism. However, as both models yielded plausible reaction pathways, its protonation state cannot be easily predicted. Qualitative agreement was reached between the calculated kinetic isotope effects (KIE) obtained for radical TS1 and the KIE measured experimentally at optimum pH, but we observed a very strong pH dependence of KIE throughout the investigated pH range (3.1 for pH 6, 5.9 for pH 7, up to 10.5 at pH 8.). This may be explained by assuming a gradual shift of the rate-determining step from TS1 associated with high KIE to TS2 associated with low KIE with lowered pH and an increasing contribution of proton/deuteron tunneling associated with high pH. Finally, models were calculated with different signs of the conformational twist of the pterin ligands, yielding only slightly different energy profiles of the reaction pathways.

摘要

采用密度泛函理论计算研究了乙基苯脱氢酶(EBDH)催化乙基苯氧化的反应机制。EBDH 是一种细菌钼喋呤酶,能够立体特异性地将烷基芳烃化合物厌氧羟化为仲醇。它是降解乙基苯的细菌(如 Aromatoleum aromaticum )代谢中的关键生物催化剂,将乙基苯转化为(S)-1-苯乙醇。最近确定的 EBDH 结构使得能够对乙基苯氧化机制进行理论描述。在这项工作中,进行了理论计算和动力学同位素实验,并将其结合起来以阐明反应机制。我们考虑了三个方面:(i)反应是否符合两个两电子转移或两个单电子转移?(ii)活性位点 His192 对反应是否重要,其质子化状态如何?(iii)不同的钼喋呤配体排列方式会产生什么催化后果?计算的最重要结果是,涉及两个单电子转移和自由基中间体的机制的能量势垒低于相应的两电子转移机制,因此更有可能。该机制涉及两个过渡态:与 C-H 键断裂相关的自由基型 TS1 和与第二个电子转移和 OH 回跳相关的碳正离子型 TS2。使用带有质子化和非质子化 His192 的模型,我们得出结论,该氨基酸参与了该机制。然而,由于两种模型都产生了合理的反应途径,因此难以预测其质子化状态。与在最佳 pH 值下实验测量得到的自由基 TS1 的计算动力学同位素效应(KIE)取得了定性一致,但我们观察到在整个研究的 pH 范围内 KIE 具有很强的 pH 依赖性(pH 6 时为 3.1,pH 7 时为 5.9,pH 8 时高达 10.5)。这可以通过假设随着 pH 的降低,速率决定步骤从与高 KIE 相关的 TS1 逐渐转变为与低 KIE 相关的 TS2,并且与高 pH 相关的质子/氘隧穿的贡献增加来解释。最后,用不同的蝶呤配体构象扭曲符号计算了模型,仅得到反应途径的能量曲线略有不同。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验