Suppr超能文献

一种基于可穿戴智能手机的平台,用于通过心电图处理进行实时心血管疾病检测。

A wearable smartphone-based platform for real-time cardiovascular disease detection via electrocardiogram processing.

作者信息

Oresko Joseph J, Duschl Heather, Cheng Allen C

机构信息

Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.

出版信息

IEEE Trans Inf Technol Biomed. 2010 May;14(3):734-40. doi: 10.1109/TITB.2010.2047865. Epub 2010 Apr 12.

Abstract

Cardiovascular disease (CVD) is the single leading cause of global mortality and is projected to remain so. Cardiac arrhythmia is a very common type of CVD and may indicate an increased risk of stroke or sudden cardiac death. The ECG is the most widely adopted clinical tool to diagnose and assess the risk of arrhythmia. ECGs measure and display the electrical activity of the heart from the body surface. During patients' hospital visits, however, arrhythmias may not be detected on standard resting ECG machines, since the condition may not be present at that moment in time. While Holter-based portable monitoring solutions offer 24-48 h ECG recording, they lack the capability of providing any real-time feedback for the thousands of heart beats they record, which must be tediously analyzed offline. In this paper, we seek to unite the portability of Holter monitors and the real-time processing capability of state-of-the-art resting ECG machines to provide an assistive diagnosis solution using smartphones. Specifically, we developed two smartphone-based wearable CVD-detection platforms capable of performing real-time ECG acquisition and display, feature extraction, and beat classification. Furthermore, the same statistical summaries available on resting ECG machines are provided.

摘要

心血管疾病(CVD)是全球单一的首要死因,并且预计仍将如此。心律失常是一种非常常见的心血管疾病类型,可能表明中风或心源性猝死风险增加。心电图(ECG)是诊断和评估心律失常风险最广泛采用的临床工具。心电图从体表测量并显示心脏的电活动。然而,在患者就诊期间,标准的静息心电图机可能检测不到心律失常,因为这种情况可能在当时并未出现。虽然基于动态心电图的便携式监测解决方案可提供24至48小时的心电图记录,但它们缺乏为所记录的数千次心跳提供任何实时反馈的能力,这些心跳必须离线进行繁琐的分析。在本文中,我们试图将动态心电图监测仪的便携性与最先进的静息心电图机的实时处理能力结合起来,利用智能手机提供一种辅助诊断解决方案。具体而言,我们开发了两个基于智能手机的可穿戴心血管疾病检测平台,能够进行实时心电图采集与显示、特征提取以及心跳分类。此外,还提供了静息心电图机上可用的相同统计摘要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验