基于机器学习的心血管疾病检测预测模型

Machine Learning-Based Predictive Models for Detection of Cardiovascular Diseases.

作者信息

Ogunpola Adedayo, Saeed Faisal, Basurra Shadi, Albarrak Abdullah M, Qasem Sultan Noman

机构信息

DAAI Research Group, College of Computing and Digital Technology, Birmingham City University, Birmingham B4 7XG, UK.

Computer Science Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia.

出版信息

Diagnostics (Basel). 2024 Jan 8;14(2):144. doi: 10.3390/diagnostics14020144.

Abstract

Cardiovascular diseases present a significant global health challenge that emphasizes the critical need for developing accurate and more effective detection methods. Several studies have contributed valuable insights in this field, but it is still necessary to advance the predictive models and address the gaps in the existing detection approaches. For instance, some of the previous studies have not considered the challenge of imbalanced datasets, which can lead to biased predictions, especially when the datasets include minority classes. This study's primary focus is the early detection of heart diseases, particularly myocardial infarction, using machine learning techniques. It tackles the challenge of imbalanced datasets by conducting a comprehensive literature review to identify effective strategies. Seven machine learning and deep learning classifiers, including K-Nearest Neighbors, Support Vector Machine, Logistic Regression, Convolutional Neural Network, Gradient Boost, XGBoost, and Random Forest, were deployed to enhance the accuracy of heart disease predictions. The research explores different classifiers and their performance, providing valuable insights for developing robust prediction models for myocardial infarction. The study's outcomes emphasize the effectiveness of meticulously fine-tuning an XGBoost model for cardiovascular diseases. This optimization yields remarkable results: 98.50% accuracy, 99.14% precision, 98.29% recall, and a 98.71% F1 score. Such optimization significantly enhances the model's diagnostic accuracy for heart disease.

摘要

心血管疾病是一项重大的全球健康挑战,凸显了开发准确且更有效的检测方法的迫切需求。多项研究在该领域提供了有价值的见解,但仍有必要改进预测模型并填补现有检测方法中的空白。例如,之前的一些研究没有考虑数据集不平衡的挑战,这可能导致预测有偏差,特别是当数据集包含少数类时。本研究的主要重点是使用机器学习技术早期检测心脏病,特别是心肌梗死。它通过进行全面的文献综述以确定有效策略来应对数据集不平衡的挑战。部署了七种机器学习和深度学习分类器,包括K近邻、支持向量机、逻辑回归、卷积神经网络、梯度提升、XGBoost和随机森林,以提高心脏病预测的准确性。该研究探索了不同的分类器及其性能,为开发强大的心肌梗死预测模型提供了有价值的见解。该研究的结果强调了精心微调XGBoost模型用于心血管疾病的有效性。这种优化产生了显著的结果:准确率98.50%、精确率99.14%、召回率98.29%和F1分数98.71%。这种优化显著提高了模型对心脏病的诊断准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6cb/10813849/ead161a95dbc/diagnostics-14-00144-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索