Eichhorn Finn, Olsson Rasmus Kjelsmark, Buron Jonas C D, Grüner-Nielsen Lars, Pedersen Jens Engholm, Jepsen Peter Uhd
DTU Fotonik, Technical University of Denmark, DK-2800 Lyngby, Denmark.
Opt Express. 2010 Mar 29;18(7):6978-87. doi: 10.1364/OE.18.006978.
We report on numerical and experimental characterization of the performance of a fiber link optimized for the delivery of sub-100-fs laser pulses at 1550 nm over several meters of fiber. We investigate the power handling capacity of the link, and demonstrate all-fiber delivery of 1-nJ pulses over a distance of 5.3 m. The fiber link consists of dispersion-compensating fiber (DCF) and standard single-mode fiber. The optical pulses at different positions in the fiber link are measured using frequency-resolved optical gating (FROG). The results are compared with numerical simulations of the pulse propagation based on the generalized nonlinear Schrödinger equation. The high input power capacity of the fiber link allows the splitting and distribution of femtosecond pulses to an array of fibers with applications in multi-channel fiber-coupled terahertz time-domain spectroscopy and imaging systems. We demonstrate THz pulse generation and detection using a distributed fiber link with 32 channels and 2.6 nJ input pulse energy.
我们报告了一种光纤链路性能的数值和实验表征,该链路针对在1550nm波长下传输亚100飞秒激光脉冲、跨越数米光纤进行了优化。我们研究了该链路的功率处理能力,并展示了在5.3米距离上1纳焦脉冲的全光纤传输。该光纤链路由色散补偿光纤(DCF)和标准单模光纤组成。使用频率分辨光学门控(FROG)测量光纤链路中不同位置的光脉冲。将结果与基于广义非线性薛定谔方程的脉冲传播数值模拟进行比较。该光纤链路的高输入功率容量使得飞秒脉冲能够分裂并分配到一系列光纤中,可应用于多通道光纤耦合太赫兹时域光谱和成像系统。我们展示了使用具有32个通道和2.6纳焦输入脉冲能量的分布式光纤链路产生和检测太赫兹脉冲的过程。