Immunology Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA.
J Toxicol Environ Health A. 2010;73(10):669-83. doi: 10.1080/15287390903578521.
Chronic human silicosis results primarily from continued occupational exposure to silica and exhibits a long asymptomatic latency. Similarly, continued exposure of Lewis rats to low doses of silica is known to cause delayed granuloma formation with limited lung inflammation and injury. On the other hand, intratracheal exposure to large doses of silica induces acute silicosis characterized by granuloma-like formations in the lung associated with apoptosis, severe alveolitis, and alveolar lipoproteinosis. To ascertain similarities/differences between acute and chronic silicosis, in this communication, we compared cellular and molecular changes in established rat models of acute and chronic silicosis. In Lewis rats, acute silicosis was induced by intratracheal instillation of 35 mg silica, and chronic silicosis through inhalation of aerosolized silica (6.2 mg/m(3), 5 d/wk for 6 wk). Animals exposed to acute high-dose silica were sacrificed at 14 d after silica instillation while chronically silica-treated animals were sacrificed between 4 d and 28 wk after silica exposure. The lung granulomas formation in acute silicosis was associated with strong inflammation, presence of TUNEL-positive cells, and increases in caspase-3 activity and other molecular markers of apoptosis. On the other hand, lungs from chronically silica-exposed animals exhibited limited inflammation and increased expression of anti-apoptotic markers, including dramatic increases in Bcl-2 and procaspase-3, and lower caspase-3 activity. Moreover, chronic silicotic lungs were TUNEL-negative and overexpressed Bcl-3 and NF-kappaB-p50 but not NF-kappaB-p65 subunits. These results suggest that, unlike acute silicosis, chronic exposures to occupationally relevant doses of silica cause significantly lower lung inflammation and elevated expression of anti-apoptotic rather than proapoptotic markers in the lung that might result from interaction between NF-kappaB-p50 and Bcl-3.
慢性人类矽肺主要是由于持续职业性暴露于二氧化硅而引起,潜伏期长且无明显症状。同样,Lewis 大鼠持续暴露于低剂量的二氧化硅会导致迟发性肉芽肿形成,伴有有限的肺部炎症和损伤。另一方面,气管内暴露于大剂量的二氧化硅会引起急性矽肺,其特征是肺部的肉芽肿样形成,伴有细胞凋亡、严重的肺泡炎和肺泡脂蛋白病。为了确定急性和慢性矽肺之间的相似性/差异性,在本通讯中,我们比较了急性和慢性矽肺大鼠模型中细胞和分子的变化。在 Lewis 大鼠中,通过气管内滴注 35mg 二氧化硅诱导急性矽肺,通过雾化吸入二氧化硅(6.2mg/m³,每周 5 天,共 6 周)诱导慢性矽肺。气管内滴注高剂量二氧化硅后 14 天处死急性矽肺大鼠,而慢性矽肺大鼠则在暴露于二氧化硅后 4 天至 28 周处死。急性矽肺的肺肉芽肿形成与强烈的炎症、TUNEL 阳性细胞的存在、caspase-3 活性和其他凋亡分子标志物的增加有关。另一方面,慢性暴露于二氧化硅的动物的肺部表现出有限的炎症和抗凋亡标志物的表达增加,包括 Bcl-2 和前半胱天冬酶-3 的显著增加,以及 caspase-3 活性的降低。此外,慢性矽肺肺组织 TUNEL 为阴性,Bcl-3 和 NF-κB-p50 过度表达,但 NF-κB-p65 亚单位不表达。这些结果表明,与急性矽肺不同,职业相关剂量的二氧化硅持续暴露会导致肺部炎症显著降低,抗凋亡标志物表达升高,而不是促凋亡标志物表达升高,这可能是 NF-κB-p50 和 Bcl-3 相互作用的结果。