Suppr超能文献

乳腺癌试验中的样本量重估。

Sample size re-estimation in a breast cancer trial.

机构信息

Center for Biostatistics, The Ohio State University, Columbus, OH, USA.

出版信息

Clin Trials. 2010 Jun;7(3):219-26. doi: 10.1177/1740774510367525. Epub 2010 Apr 14.

Abstract

BACKGROUND

During the recruitment phase of a randomized breast cancer trial, investigating the time to recurrence, we found a strong suggestion that the failure probabilities used at the design stage were too high. Since most of the methodological research involving sample size re-estimation has focused on normal or binary outcomes, we developed a method which preserves blinding to re-estimate sample size in our time to event trial.

PURPOSE

A mistakenly high estimate of the failure rate at the design stage may reduce the power unacceptably for a clinically important hazard ratio. We describe an ongoing trial and an application of a sample size re-estimation method that combines current trial data with prior trial data or assumes a parametric model to re-estimate failure probabilities in a blinded fashion.

METHODS

Using our current blinded trial data and additional information from prior studies, we re-estimate the failure probabilities to be used in sample size re-calculation. We employ bootstrap re-sampling to quantify uncertainty in the re-estimated sample sizes.

RESULTS

At the time of re-estimation data from 278 patients were available, averaging 1.2 years of follow up. Using either method, we estimated a sample size increase of zero for the hazard ratio because the estimated failure probabilities at the time of re-estimation differed little from what was expected. We show that our method of blinded sample size re-estimation preserves the type I error rate. We show that when the initial guess of the failure probabilities are correct, the median increase in sample size is zero.

LIMITATIONS

Either some prior knowledge of an appropriate survival distribution shape or prior data is needed for re-estimation.

CONCLUSIONS

In trials when the accrual period is lengthy, blinded sample size re-estimation near the end of the planned accrual period should be considered. In our examples, when assumptions about failure probabilities and HRs are correct the methods usually do not increase sample size or otherwise increase it by very little. Clinical Trials 2010; 7: 219. http://ctj.sagepub.com.

摘要

背景

在一项随机乳腺癌试验的招募阶段,我们在研究复发时间时发现,用于设计阶段的失败概率似乎过高。由于涉及样本量重新估计的大多数方法学研究都集中在正态或二项结果上,因此我们开发了一种方法,可在我们的生存时间试验中保持盲法来重新估计样本量。

目的

设计阶段对失败率的过高估计可能会使对于临床重要危险比的功效不可接受地降低。我们描述了正在进行的试验和一种样本量重新估计方法的应用,该方法将当前试验数据与先前试验数据结合起来,或者假设参数模型,以盲法重新估计失败概率。

方法

我们使用当前的盲法试验数据和来自先前研究的其他信息来重新估计用于样本量重新计算的失败概率。我们采用自举法重新抽样来量化重新估计的样本量的不确定性。

结果

在重新估计数据时,有 278 名患者可用,平均随访 1.2 年。使用这两种方法,由于重新估计时的估计失败概率与预期值相差不大,我们估计危险比的样本量增加为零。我们表明,我们的盲法样本量重新估计方法保持了Ⅰ类错误率。我们表明,当失败概率的初始猜测正确时,样本量中位数增加为零。

局限性

重新估计需要一些有关适当生存分布形状或先前数据的先验知识。

结论

在累积期较长的试验中,应考虑在计划累积期接近尾声时进行盲法样本量重新估计。在我们的示例中,当对失败概率和 HR 的假设正确时,这些方法通常不会增加样本量或仅略微增加样本量。临床试验 2010;7:219。http://ctj.sagepub.com。

相似文献

1
Sample size re-estimation in a breast cancer trial.
Clin Trials. 2010 Jun;7(3):219-26. doi: 10.1177/1740774510367525. Epub 2010 Apr 14.
5
Blinded assessment of treatment effects for survival endpoint in an ongoing trial.
Pharm Stat. 2012 May-Jun;11(3):204-13. doi: 10.1002/pst.535. Epub 2012 Feb 15.
7
Not too big, not too small: a goldilocks approach to sample size selection.
J Biopharm Stat. 2014;24(3):685-705. doi: 10.1080/10543406.2014.888569.
8
Sample size re-estimation in a superiority clinical trial using a hybrid classical and Bayesian procedure.
Stat Methods Med Res. 2019 Jun;28(6):1852-1878. doi: 10.1177/0962280218776991. Epub 2018 Jun 5.
9
Sample size re-estimation in an on-going NIH-sponsored clinical trial: the secondary prevention of small subcortical strokes experience.
Contemp Clin Trials. 2012 Sep;33(5):1088-93. doi: 10.1016/j.cct.2012.06.007. Epub 2012 Jun 30.

引用本文的文献

1
Flexible Spline Models for Blinded Sample Size Reestimation in Event-Driven Clinical Trials.
Pharm Stat. 2025 Mar-Apr;24(2):e2459. doi: 10.1002/pst.2459. Epub 2024 Dec 11.
2
A Signature Enrichment Design with Bayesian Adaptive Randomization.
J Appl Stat. 2021;48(6):1091-1110. doi: 10.1080/02664763.2020.1757048. Epub 2020 Apr 27.

本文引用的文献

1
Computing Confidence Bounds for Power and Sample Size of the General Linear Univariate Model.
Am Stat. 1995 Jan 1;49(1):43-47. doi: 10.1080/00031305.1995.10476111.
2
Survival after adjuvant oophorectomy and tamoxifen in operable breast cancer in premenopausal women.
J Clin Oncol. 2008 Jan 10;26(2):253-7. doi: 10.1200/JCO.2007.11.6061. Epub 2007 Dec 17.
3
Breast cancer heterogeneity: a mixture of at least two main types?
J Natl Cancer Inst. 2006 Jul 19;98(14):948-51. doi: 10.1093/jnci/djj295.
5
Sample size re-estimation: recent developments and practical considerations.
Stat Med. 2001;20(17-18):2625-43. doi: 10.1002/sim.733.
6
Controlling test size while gaining the benefits of an internal pilot design.
Biometrics. 2001 Jun;57(2):625-31. doi: 10.1111/j.0006-341x.2001.00625.x.
7
Exact test size and power of a Gaussian error linear model for an internal pilot study.
Stat Med. 1999 May 30;18(10):1199-214. doi: 10.1002/(sici)1097-0258(19990530)18:10<1199::aid-sim124>3.0.co;2-0.
9
Modifying the design of ongoing trials without unblinding.
Stat Med. 1998 Jan 15;17(1):89-100. doi: 10.1002/(sici)1097-0258(19980115)17:1<89::aid-sim730>3.0.co;2-d.
10
Computer simulation of a breast cancer metastasis model.
Breast Cancer Res Treat. 1997 Sep;45(2):193-202. doi: 10.1023/a:1005849301420.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验