Suppr超能文献

用于内部预试验研究的高斯误差线性模型的确切检验规模和效能

Exact test size and power of a Gaussian error linear model for an internal pilot study.

作者信息

Coffey C S, Muller K E

机构信息

Department of Biostatistics, University of North Carolina, Chapel Hill 27599-7400, USA.

出版信息

Stat Med. 1999 May 30;18(10):1199-214. doi: 10.1002/(sici)1097-0258(19990530)18:10<1199::aid-sim124>3.0.co;2-0.

Abstract

Wittes and Brittain recommended using an 'internal pilot study' to adjust sample size. The approach involves five steps in testing a general linear hypothesis for a general linear univariate model, with Gaussian errors. First, specify the design, hypothesis, desired test size, power, a smallest 'clinically meaningful' effect, and a speculated error variance. Second, conduct a power analysis to choose provisionally a planned sample size. Third, collect a specified proportion of the planned sample as the internal pilot sample, and estimate the variance (but do not test the hypothesis). Fourth, update the power analysis with the variance estimate to adjust the total sample size. Fifth, finish the study and test the hypothesis with all data. We describe methods for computing exact test size and power under this scenario. Our analytic results agree with simulations of Wittes and Brittain. Furthermore, our exact results apply to any general linear univariate model with fixed predictors, which is much more general than the two-sample t-test considered by Wittes and Brittain. In addition, our results allow for examination of the impact on test size of internal pilot studies for more complicated designs in the framework of the general linear model. We examine the impact of (i) small samples, (ii) allowing the planned sample size to decrease, (iii) the choice of internal pilot sample size, and (iv) the maximum allowable size of the second sample. All affect test size, power and expected total sample size. We present a number of examples including one that uses an internal pilot study in a three-group analysis of variance.

摘要

维茨和布里顿建议使用“内部预试验研究”来调整样本量。该方法在检验具有高斯误差的一般线性单变量模型的一般线性假设时涉及五个步骤。首先,明确设计、假设、期望的检验规模、功效、最小的“临床有意义”效应以及推测的误差方差。其次,进行功效分析以临时选择计划样本量。第三,收集计划样本中指定比例的样本作为内部预试验样本,并估计方差(但不检验假设)。第四,用方差估计值更新功效分析以调整总样本量。第五,完成研究并用所有数据检验假设。我们描述了在这种情况下计算精确检验规模和功效的方法。我们的分析结果与维茨和布里顿的模拟结果一致。此外,我们的精确结果适用于任何具有固定预测变量的一般线性单变量模型,这比维茨和布里顿所考虑的两样本t检验要普遍得多。此外,我们的结果允许在一般线性模型框架内检查内部预试验研究对更复杂设计的检验规模的影响。我们研究了以下因素的影响:(i)小样本,(ii)允许计划样本量减少,(iii)内部预试验样本量的选择,以及(iv)第二个样本的最大允许规模。所有这些都会影响检验规模、功效和期望的总样本量。我们给出了一些例子,包括一个在三组方差分析中使用内部预试验研究的例子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验