Laboratoire Adaptation et Pathogénie des Micro-Organismes, Université Joseph Fourier Grenoble 1, Grenoble cedex 9, France.
Mol Biol Evol. 2010 Sep;27(9):2113-28. doi: 10.1093/molbev/msq099. Epub 2010 Apr 14.
DNA supercoiling is the master function that interconnects chromosome structure and global gene transcription. This function has recently been shown to be under strong selection in Escherichia coli. During the evolution of 12 initially identical populations propagated in a defined environment for 20,000 generations, parallel increases in DNA supercoiling were observed in ten populations. The genetic changes associated with the increased supercoiling were examined in one population, and beneficial mutations in the genes topA (encoding topoisomerase I) and fis (encoding a histone-like protein) were identified. To elucidate the molecular basis and impact of these changes, we quantified the level of genetic, phenotypic, and molecular parallelism linked to DNA supercoiling in all 12 evolving populations. First, sequence determination of DNA topology-related loci revealed strong genetic parallelism, with mutations concentrated in three genes (topA, fis, and dusB), although the populations had different alleles at each locus. Statistical analyses of these polymorphisms implied the action of positive selection and, moreover, suggested that fis and dusB, which belong to the same operon, have related functions. Indeed, we demonstrated that DusB regulates the expression of fis by both experimental and phylogenetic analyses. Second, molecular analyses of five mutations in fis and dusB affecting the transcription, translation, and protein activity of Fis also revealed strong parallelism in the resulting phenotypic effects. Third, artificially increasing DNA supercoiling in one of the two populations that lacked DNA topology changes led to a significant fitness increase. The high levels of molecular and genetic parallelism, targeting a small subset of the many genes involved in DNA supercoiling, indicate that changes in DNA superhelicity have been important in the evolution of these populations. Surprisingly, however, most of the evolved alleles we tested had either no detectable or slightly deleterious effects on fitness, despite these signatures of positive selection.
DNA 超螺旋是连接染色体结构和全局基因转录的主要功能。最近的研究表明,这种功能在大肠杆菌中受到强烈的选择。在 12 个最初相同的种群在一个定义的环境中繁殖 20000 代的进化过程中,在 10 个种群中观察到 DNA 超螺旋的平行增加。在一个种群中,研究了与超螺旋增加相关的遗传变化,并鉴定了编码拓扑异构酶 I 的 topA 和编码组蛋白样蛋白的 fis 的有益突变。为了阐明这些变化的分子基础和影响,我们在所有 12 个进化种群中定量研究了与 DNA 超螺旋相关的遗传、表型和分子平行性。首先,对与 DNA 拓扑相关的基因座的序列测定揭示了强烈的遗传平行性,尽管每个基因座的种群都有不同的等位基因,但突变集中在三个基因(topA、 fis 和 dusB)中。对这些多态性的统计分析表明了正选择的作用,而且, fis 和 dusB 属于同一个操纵子,具有相关的功能。事实上,我们通过实验和系统发育分析证明了 DusB 通过调节 fis 的表达。其次,对影响 fis 和 dusB 转录、翻译和蛋白活性的五个突变的分子分析也揭示了在产生的表型效应中存在强烈的平行性。第三,在缺乏 DNA 拓扑变化的两个种群之一中人为地增加 DNA 超螺旋度导致了显著的适应度增加。针对涉及 DNA 超螺旋的许多基因中的一小部分的高度分子和遗传平行性表明,DNA 超螺旋度的变化在这些种群的进化中是重要的。然而,令人惊讶的是,尽管存在正选择的迹象,但我们测试的大多数进化等位基因要么对适应性没有可检测的影响,要么有轻微的有害影响。