Suppr超能文献

适应在微妙的环境干扰下的变化揭示了局部模块性和全局多效性。

Fitness variation across subtle environmental perturbations reveals local modularity and global pleiotropy of adaptation.

机构信息

Department of Biology, Stanford University, Stanford, United States.

Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, United States.

出版信息

Elife. 2020 Dec 2;9:e61271. doi: 10.7554/eLife.61271.

Abstract

Building a genotype-phenotype-fitness map of adaptation is a central goal in evolutionary biology. It is difficult even when adaptive mutations are known because it is hard to enumerate which phenotypes make these mutations adaptive. We address this problem by first quantifying how the fitness of hundreds of adaptive yeast mutants responds to subtle environmental shifts. We then model the number of phenotypes these mutations collectively influence by decomposing these patterns of fitness variation. We find that a small number of inferred phenotypes can predict fitness of the adaptive mutations near their original glucose-limited evolution condition. Importantly, inferred phenotypes that matter little to fitness at or near the evolution condition can matter strongly in distant environments. This suggests that adaptive mutations are locally modular - affecting a small number of phenotypes that matter to fitness in the environment where they evolved - yet globally pleiotropic - affecting additional phenotypes that may reduce or improve fitness in new environments.

摘要

构建适应的基因型-表型-适应性图谱是进化生物学的一个核心目标。即使知道适应性突变,这也是困难的,因为很难确定哪些表型使这些突变具有适应性。我们通过首先量化数百种适应性酵母突变体的适应性对微妙环境变化的响应来解决这个问题。然后,我们通过分解这些适应性变化模式来模拟这些突变共同影响的表型数量。我们发现,少数推断出的表型可以预测适应性突变在其原始葡萄糖限制进化条件下的适应性。重要的是,在进化条件下或附近对适应性影响不大的推断表型在遥远的环境中可能具有很强的影响。这表明适应性突变是局部模块化的 - 只影响少数对进化环境中适应性重要的表型 - 但在全局上是多效性的 - 影响新环境中可能降低或提高适应性的其他表型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e81d/7880691/fddc4e503f7e/elife-61271-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验