Department of Physics and Materials Science Institute, The University of Oregon, Eugene, Oregon 97403-1274, USA.
Langmuir. 2010 Jul 6;26(13):10541-5. doi: 10.1021/la1005538.
The nature of attractive interactions observed between like-charged microparticles near a confining wall remains an outstanding puzzle in colloidal science. The shortage of experimental systems that provide tunable attractions contributes to the lack of progress in solving this mystery. We have recently shown that the functionalization of microspheres with lipid membranes allows simple control of interparticle interactions as a function of membrane composition (Kong, Y.; Parthasarathy, R. Soft Matter 2009, 5, 2027-2032). Here we introduce a new approach to biomembrane-mediated control in which varying amounts of a peripheral membrane protein, cholera toxin subunit B, are bound to the surface of lipid-functionalized silica particles. Protein functionalization again provides a family of tunable attractive pair interactions, measured using an optical line trap. Surprisingly, however, the form of interactions is strikingly different for particles with protein-plus-lipid membranes than for particles with lipid-only membranes, displaying opposite correlations between the depth of the attractive potential well and the spatial range of the interaction as well as between the well depth and the distance to the confining wall. Our findings and their distinctiveness from previous membrane-functionalized systems not only demonstrate an orthogonal route to the practical control of colloidal assembly but also, more fundamentally, show that multiple physical mechanisms or mechanisms that are especially sensitive to particle surface chemistries may be responsible for governing like-charge attraction in colloidal systems.
在胶体科学中,壁面附近带相同电荷的微粒之间的吸引力的本质仍然是一个悬而未决的问题。缺乏能够提供可调吸引力的实验系统是解决这个谜团的进展缓慢的原因之一。我们最近表明,通过脂质膜对微球进行功能化,可以简单地控制作为膜组成函数的颗粒间相互作用(Kong,Y.;Parthasarathy,R. Soft Matter 2009,5,2027-2032)。在这里,我们引入了一种新的生物膜介导控制方法,其中在脂质功能化的硅颗粒表面结合了不同量的外周膜蛋白霍乱毒素亚基 B。蛋白功能化再次提供了一系列可调的吸引力对相互作用,使用光学线阱进行测量。然而,令人惊讶的是,对于具有蛋白质加脂质膜的颗粒与仅具有脂质膜的颗粒,相互作用的形式存在显著差异,吸引力势阱的深度与相互作用的空间范围之间以及阱深度与壁面之间存在相反的相关性。我们的发现及其与以前的膜功能化系统的不同之处不仅证明了胶体组装的实际控制的一种正交途径,而且更根本地表明,可能有多种物理机制或对颗粒表面化学特别敏感的机制负责控制胶体系统中的同电荷吸引力。