Suppr超能文献

一种解释组织蛋白酶B催化水解反应pH依赖性特异性的模型。

A model to explain the pH-dependent specificity of cathepsin B-catalysed hydrolyses.

作者信息

Khouri H E, Plouffe C, Hasnain S, Hirama T, Storer A C, Ménard R

机构信息

Protein Engineering Section, National Research Council Canada, Montréal, Québec.

出版信息

Biochem J. 1991 May 1;275 ( Pt 3)(Pt 3):751-7. doi: 10.1042/bj2750751.

Abstract
  1. Three synthetic substrates of cathepsin B (EC 3.4.22.1) with various amino acid residues at the P2 position (Cbz-Phe-Arg-NH-Mec, Cbz-Arg-Arg-NH-Mec and Cbz-Cit-Arg-NH-Mec, where Cbz represents benzyloxycarbonyl and NH-Mec represents 4-methylcoumarin-7-ylamide) were used to investigate the pH-dependency of cathepsin B-catalysed hydrolyses and to obtain information on the nature of enzyme-substrate interactions. 2. Non-linear-regression analysis of pH-activity profiles for these substrates indicates that at least four ionizable groups on cathepsin B with pKa values of 3.3, 4.55, 5.46 and greater than 7.3 can affect the rate of substrate hydrolysis. 3. Ionization of the residue with a pKa of 5.46 has a strong effect on activity towards the substrate with an arginine in P2 (8.4-fold increase in activity) but has only a moderate effect on the rate of hydrolysis with Cbz-Cit-Arg-NH-Mec (2.3-fold increase in activity) and virtually no effect with Cbz-Phe-Arg-NH-Mec. The kinetic data are consistent with this group being an acid residue with a side chain able to interact with the side chains of an arginine or a citrulline in the P2 position of a substrate. Amino acid sequence alignment and model building with the related enzyme papain (EC 3.4.22.2) suggest that Glu-245 of cathepsin B is a likely candidate. The relative importance of electrostatic and hydrophobic interactions in the S2 subsite of cathepsin B is discussed. 4. For all three substrates, activity appears after ionization of a group with a pKa of 3.3, believed to be the active-site Cys-29 of cathepsin B. The identity of the groups with pKa values of 4.55 and greater than 7.3 remains unknown.
摘要
  1. 使用了三种组织蛋白酶B(EC 3.4.22.1)的合成底物,它们在P2位置具有不同的氨基酸残基(Cbz-Phe-Arg-NH-Mec、Cbz-Arg-Arg-NH-Mec和Cbz-Cit-Arg-NH-Mec,其中Cbz代表苄氧羰基,NH-Mec代表4-甲基香豆素-7-基酰胺),以研究组织蛋白酶B催化水解的pH依赖性,并获取有关酶-底物相互作用性质的信息。2. 对这些底物的pH-活性曲线进行非线性回归分析表明,组织蛋白酶B上至少有四个可电离基团,其pKa值分别为3.3、4.55、5.46和大于7.3,可影响底物水解速率。3. pKa为5.46的残基的电离对P2位置含有精氨酸的底物的活性有强烈影响(活性增加8.4倍),但对Cbz-Cit-Arg-NH-Mec的水解速率只有中等影响(活性增加2.3倍),而对Cbz-Phe-Arg-NH-Mec几乎没有影响。动力学数据表明该基团是一个酸性残基,其侧链能够与底物P2位置的精氨酸或瓜氨酸的侧链相互作用。与相关酶木瓜蛋白酶(EC 3.4.22.2)的氨基酸序列比对和模型构建表明,组织蛋白酶B的Glu-245可能是候选基团。讨论了组织蛋白酶B的S2亚位点中静电和疏水相互作用的相对重要性。4. 对于所有三种底物,在pKa为3.3的基团电离后出现活性,该基团被认为是组织蛋白酶B的活性位点Cys-29。pKa值为4.55和大于7.3的基团的身份仍然未知。

相似文献

1
A model to explain the pH-dependent specificity of cathepsin B-catalysed hydrolyses.
Biochem J. 1991 May 1;275 ( Pt 3)(Pt 3):751-7. doi: 10.1042/bj2750751.
3
Studies on the aminopeptidase activity of rat cathepsin H.
Eur J Biochem. 1992 Dec 15;210(3):759-64. doi: 10.1111/j.1432-1033.1992.tb17478.x.
4
Engineering of papain: selective alteration of substrate specificity by site-directed mutagenesis.
Biochemistry. 1991 Sep 17;30(37):8929-36. doi: 10.1021/bi00101a003.
8
Characterization of the S3 subsite specificity of cathepsin B.
J Biol Chem. 1995 Jul 28;270(30):18036-43. doi: 10.1074/jbc.270.30.18036.

引用本文的文献

1
Autophagy-lysosomal pathway impairment and cathepsin dysregulation in Alzheimer's disease.
Front Mol Biosci. 2024 Oct 31;11:1490275. doi: 10.3389/fmolb.2024.1490275. eCollection 2024.
2
Bibliometric Analysis of Cathepsin B Research From 2011 to 2021.
Front Med (Lausanne). 2022 Jul 6;9:898455. doi: 10.3389/fmed.2022.898455. eCollection 2022.
3
Cathepsin B Relocalization in Late Membrane Disrupted Neurons Following Diffuse Brain Injury in Rats.
ASN Neuro. 2022 Jan-Dec;14:17590914221099112. doi: 10.1177/17590914221099112.
4
Cathepsin B pH-Dependent Activity Is Involved in Lysosomal Dysregulation in Atrophic Age-Related Macular Degeneration.
Oxid Med Cell Longev. 2019 Dec 6;2019:5637075. doi: 10.1155/2019/5637075. eCollection 2019.
5
Fluorescent probes towards selective cathepsin B detection and visualization in cancer cells and patient samples.
Chem Sci. 2019 Jul 31;10(36):8461-8477. doi: 10.1039/c9sc00997c. eCollection 2019 Sep 28.
6
VASP-E: specificity annotation with a volumetric analysis of electrostatic isopotentials.
PLoS Comput Biol. 2014 Aug 28;10(8):e1003792. doi: 10.1371/journal.pcbi.1003792. eCollection 2014 Aug.
7
Optimizing dentin bond durability: control of collagen degradation by matrix metalloproteinases and cysteine cathepsins.
Dent Mater. 2013 Jan;29(1):116-35. doi: 10.1016/j.dental.2012.08.004. Epub 2012 Aug 16.
8
Highly specific protease-based approach for detection of porphyromonas gingivalis in diagnosis of periodontitis.
J Clin Microbiol. 2012 Jan;50(1):104-12. doi: 10.1128/JCM.05313-11. Epub 2011 Nov 9.
9
Direct measurement of cathepsin B activity in the cytosol of apoptotic cells by an activity-based probe.
Chem Biol. 2009 Sep 25;16(9):1001-12. doi: 10.1016/j.chembiol.2009.07.011.
10
Endolysosomal proteolysis and its regulation.
Biochem J. 2002 May 1;363(Pt 3):417-29. doi: 10.1042/0264-6021:3630417.

本文引用的文献

1
Tissue sulfhydryl groups.
Arch Biochem Biophys. 1959 May;82(1):70-7. doi: 10.1016/0003-9861(59)90090-6.
2
Degradation of fructose-1,6-bisphosphate aldolase by cathepsin B.
Biochem J. 1980 Jul 1;189(1):17-25. doi: 10.1042/bj1890017.
4
Cathepsin B, Cathepsin H, and cathepsin L.
Methods Enzymol. 1981;80 Pt C:535-61. doi: 10.1016/s0076-6879(81)80043-2.
5
Use of new synthetic substrates for assays of cathepsin L and cathepsin B.
J Biochem. 1983 Apr;93(4):1129-35. doi: 10.1093/oxfordjournals.jbchem.a134238.
6
Purification and characterization of cathepsin B from monkey skeletal muscle.
J Biochem. 1984 Mar;95(3):871-9. doi: 10.1093/oxfordjournals.jbchem.a134680.
9
Action of human liver cathepsin B on the oxidized insulin B chain.
Biochem J. 1983 Aug 1;213(2):467-71. doi: 10.1042/bj2130467.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验