Suppr超能文献

B3LYP 研究在完全还原和混合价态牛细胞色素 c 氧化酶催化位点从 O2 到 H2O 的还原机制。

B3LYP study on reduction mechanisms from O2 to H2O at the catalytic sites of fully reduced and mixed-valence bovine cytochrome c oxidases.

机构信息

Chemistry Department for Materials, Graduate School of Engineering, Mie University, Kurima-machiya 1577, Tsu, Mie 514-8507, Japan.

出版信息

Bioinorg Chem Appl. 2010;2010:182804. doi: 10.1155/2010/182804. Epub 2010 Apr 6.

Abstract

Reduction mechanisms of oxygen molecule to water molecules in the fully reduced (FR) and mixed-valence (MV) bovine cytochrome c oxidases (CcO) have been systematically examined based on the B3LYP calculations. The catalytic cycle using four electrons and four protons has been also shown consistently. The MV CcO catalyses reduction to produce one water molecule, while the FR CcO catalyses to produce two water molecules. One water molecule is added into vacant space between His240 and His290 in the catalytic site. This water molecule constructs the network of hydrogen bonds of Tyr244, farnesyl ethyl, and Thr316 that is a terminal residue of the K-pathway. It plays crucial roles for the proton transfer to the dioxygen to produce the water molecules in both MV and FR CcOs. Tyr244 functions as a relay of the proton transfer from the K-pathway to the added water molecule, not as donors of a proton and an electron to the dioxygen. The reduction mechanisms of MV and FR CcOs are strictly distinguished. In the FR CcO, the Cu atom at the Cu(B) site maintains the reduced state Cu(I) during the process of formation of first water molecule and plays an electron storage. At the final stage of formation of first water molecule, the Cu(I) atom releases an electron to Fe-O. During the process of formation of second water molecule, the Cu atom maintains the oxidized state Cu(II). In contrast with experimental proposals, the K-pathway functions for formation of first water molecule, while the D-pathway functions for second water molecule. The intermediates, P(M), P(R), F, and O, obtained in this work are compared with those proposed experimentally.

摘要

基于 B3LYP 计算,系统研究了完全还原(FR)和混合价(MV)牛细胞色素 c 氧化酶(CcO)中氧分子还原为水分子的还原机制。还展示了使用四个电子和四个质子的催化循环。MV CcO 催化还原生成一个水分子,而 FR CcO 催化生成两个水分子。一个水分子被添加到催化位点中 His240 和 His290 之间的空位中。该水分子构建了 Tyr244、法呢基乙基和 Thr316 的氢键网络,它们是 K 途径的末端残基。它在 MV 和 FR CcO 中对向二氧转移质子以产生水分子起着至关重要的作用。Tyr244 作为质子从 K 途径转移到添加的水分子的中继,而不是作为质子和电子的供体向二氧转移。MV 和 FR CcO 的还原机制严格区分。在 FR CcO 中,Cu(B) 位点的 Cu 原子在第一个水分子形成过程中保持还原态 Cu(I),并起到电子储存作用。在第一个水分子形成的最后阶段,Cu(I) 原子将电子释放到 Fe-O。在第二个水分子形成过程中,Cu 原子保持氧化态 Cu(II)。与实验建议相反,K 途径用于形成第一个水分子,而 D 途径用于形成第二个水分子。与实验提出的相比,本工作中获得的中间体 P(M)、P(R)、F 和 O 进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验