D-天冬氨酸:一种在哺乳动物中具有神经调节活性的非典型氨基酸。
D-aspartate: an atypical amino acid with neuromodulatory activity in mammals.
机构信息
Laboratory of Behavioural Neuroscience, Ceinge Biotecnologie Avanzate, Naples, Italy.
出版信息
Rev Neurosci. 2009;20(5-6):429-40. doi: 10.1515/revneuro.2009.20.5-6.429.
Within the pool of endogenous amino acids, serine and aspartate are the only two residues occurring at significant concentrations in free D-form in mammalian tissues. D-Serine (D-Ser) is mainly localized in the forebrain structures of the CNS throughout embryonic development and postnatal phase. Compelling evidence demonstrates that D-Ser has a functional role as an endogenous co-agonist at N-methyl-D-aspartate receptors (NMDARs) and shows its beneficial involvement in psychiatric disorders including schizophrenia. On the other hand, knowledge concerning the role of free D-Asp in mammals has so far been less extensive. D-Asp occurs in the brain as well as in peripheral tissues including the endocrine glands. In endocrine glands, D-Asp levels increase during the postnatal period in concomitance with their functional maturation. The involvement of D-Asp in the regulation of the synthesis and/or release of different hormones has been clearly demonstrated. However, its biological significance in the brain is still obscure. D-Asp appears with a peculiar temporal pattern of localization, being abundant during embryonic development and strongly decreasing after birth. This phenomenon is the result of the postnatal onset of D-Asp oxidase (DDO) expression, the only known enzyme that strictly controls the endogenous levels of D-Asp. The pharmacological affinity of D-Asp for the glutamate site of NMDARs has raised the intriguing question whether this D-amino acid may have some in vivo influence on responses mediated by this subclass of glutamate receptors. In order to unveil the physiological function of D-Asp and of its metabolizing enzyme, genetic and pharmacological approaches have been recently developed. It has now become possible to generate animal models with abnormally elevated levels of D-Asp in adulthood based on the targeted deletion of the Ddo gene and on the oral administration of D-Asp. These animal models have thus highlighted that D-Asp has a neuromodulatory role at NMDARs in brain areas where they regulate crucial nervous functions. Indeed, abnormally high D-Asp levels in the hippocampus are able to strongly enhance NMDAR-dependent LTP and, in turn, to facilitate spatial memory of mice. Moreover, in both mutant and treated animals, this deregulated D-Asp content completely suppresses striatal LTD, most likely via overactivation of NMDARs. The later synaptic plasticity alteration resembles that produced by chronic administration of haloperidol and is probably the neurobiological substrate responsible for the attenuation of prepulse inhibition deficits induced by amphetamine and MK-801 in Ddo knockout and D-Asp-treated mice. These in vitro and in vivo findings, together with others reported in this review, support a neuromodulatory action for D-Asp at glutamatergic synapses. In addition, they suggest that this D-amino acid may play a potential beneficial role in conditions related to a pathological hypofunctioning of NMDARs in the mammalian brain.
在内源性氨基酸池中,丝氨酸和天冬氨酸是仅有的两种在哺乳动物组织中以游离 D 型形式大量存在的残基。D-丝氨酸(D-Ser)主要定位于中枢神经系统的前脑结构,贯穿胚胎发育和出生后阶段。令人信服的证据表明,D-Ser 作为 N-甲基-D-天冬氨酸受体(NMDARs)的内源性协同激动剂具有功能作用,并显示其在包括精神分裂症在内的精神疾病中的有益作用。另一方面,目前关于游离 D-Asp 在哺乳动物中的作用的知识还不够广泛。D-Asp 存在于大脑以及包括内分泌腺在内的外周组织中。在内分泌腺中,D-Asp 水平在出生后期间随着其功能成熟而增加。已经清楚地证明了 D-Asp 在调节不同激素的合成和/或释放中的作用。然而,它在大脑中的生物学意义仍然不清楚。D-Asp 以一种特殊的时间定位模式出现,在胚胎发育期间丰富,并在出生后强烈减少。这种现象是 D-Asp 氧化酶(DDO)表达后出生的结果,DDO 是唯一严格控制内源性 D-Asp 水平的已知酶。D-Asp 对 NMDAR 谷氨酸位点的药理学亲和力提出了一个有趣的问题,即这种 D-氨基酸是否可能对这种谷氨酸受体亚类介导的反应产生一些体内影响。为了揭示 D-Asp 和其代谢酶的生理功能,最近开发了遗传和药理学方法。现在已经有可能基于 Ddo 基因的靶向缺失和 D-Asp 的口服给药,在成年动物中产生 D-Asp 水平异常升高的动物模型。这些动物模型突出表明,D-Asp 在调节关键神经功能的大脑区域的 NMDAR 中具有神经调节作用。事实上,海马体中异常高的 D-Asp 水平能够强烈增强 NMDAR 依赖性 LTP,并反过来促进小鼠的空间记忆。此外,在突变体和处理的动物中,这种失调的 D-Asp 含量完全抑制纹状体 LTD,很可能通过 NMDAR 的过度激活。后期的突触可塑性改变类似于慢性给予氟哌啶醇产生的改变,并且可能是负责减轻 Ddo 敲除和 D-Asp 处理的小鼠中安非他命和 MK-801 诱导的预脉冲抑制缺陷的神经生物学基础。这些体外和体内发现,以及本文综述中报道的其他发现,支持 D-Asp 在谷氨酸能突触的神经调节作用。此外,它们表明这种 D-氨基酸可能在哺乳动物大脑中 NMDAR 病理性功能障碍相关的情况下发挥潜在的有益作用。