Suppr超能文献

基于混合遗传算法的描述符优化和 QSAR 模型,用于预测 HIV 蛋白酶抑制剂替拉那韦类似物的生物活性。

Hybrid-genetic algorithm based descriptor optimization and QSAR models for predicting the biological activity of Tipranavir analogs for HIV protease inhibition.

机构信息

Department of Biomedical Engineering, University of California-Davis, Davis, CA 95616-5294, USA.

出版信息

J Mol Graph Model. 2010 Jun;28(8):852-62. doi: 10.1016/j.jmgm.2010.03.005. Epub 2010 Mar 24.

Abstract

The prediction of biological activity of a chemical compound from its structural features plays an important role in drug design. In this paper, we discuss the quantitative structure activity relationship (QSAR) prediction models developed on a dataset of 170 HIV protease enzyme inhibitors. Various chemical descriptors that encode hydrophobic, topological, geometrical and electronic properties are calculated to represent the structures of the molecules in the dataset. We use the hybrid-GA (genetic algorithm) optimization technique for descriptor space reduction. The linear multiple regression analysis (MLR), correlation-based feature selection (CFS), non-linear decision tree (DT), and artificial neural network (ANN) approaches are used as fitness functions. The selected descriptors represent the overall descriptor space and account well for the binding nature of the considered dataset. These selected features are also human interpretable and can be used to explain the interactions between a drug molecule and its receptor protein (HIV protease). The selected descriptors are then used for developing the QSAR prediction models by using the MLR, DT and ANN approaches. These models are discussed, analyzed and compared to validate and test their performance for this dataset. All three approaches yield the QSAR models with good prediction performance. The models developed by DT and ANN are comparable and have better prediction than the MLR model. For ANN model, weight analysis is carried out to analyze the role of various descriptors in activity prediction. All the prediction models point towards the involvement of hydrophobic interactions. These models can be useful for predicting the biological activity of new untested HIV protease inhibitors and virtual screening for identifying new lead compounds.

摘要

从化合物的结构特征预测其生物活性在药物设计中起着重要作用。本文讨论了在包含 170 种 HIV 蛋白酶抑制剂的数据集上开发的定量构效关系 (QSAR) 预测模型。计算了各种化学描述符,这些描述符编码了疏水性、拓扑、几何和电子特性,以表示数据集中分子的结构。我们使用混合遗传算法 (GA) 优化技术进行描述符空间缩减。线性多元回归分析 (MLR)、基于相关性的特征选择 (CFS)、非线性决策树 (DT) 和人工神经网络 (ANN) 方法被用作适应度函数。选择的描述符代表整体描述符空间,很好地描述了所考虑数据集的结合性质。这些选定的特征也具有人类可解释性,可用于解释药物分子与其受体蛋白 (HIV 蛋白酶) 之间的相互作用。然后,使用 MLR、DT 和 ANN 方法,使用选定的描述符来开发 QSAR 预测模型。讨论、分析和比较这些模型,以验证和测试它们对该数据集的性能。这三种方法都产生了具有良好预测性能的 QSAR 模型。DT 和 ANN 方法开发的模型具有可比性,并且比 MLR 模型具有更好的预测能力。对于 ANN 模型,进行了权重分析,以分析各种描述符在活性预测中的作用。所有预测模型都表明涉及疏水相互作用。这些模型可用于预测新的未经测试的 HIV 蛋白酶抑制剂的生物活性,并进行虚拟筛选以识别新的先导化合物。

相似文献

3
QSAR studies on HIV-1 protease inhibitors using non-linearly transformed descriptors.
Curr Comput Aided Drug Des. 2012 Mar;8(1):10-49. doi: 10.2174/157340912799218534.
4
QSAR prediction of HIV-1 protease inhibitory activities using docking derived molecular descriptors.
J Theor Biol. 2015 Mar 21;369:13-22. doi: 10.1016/j.jtbi.2015.01.008. Epub 2015 Jan 16.
5
Application of GA-MLR for QSAR Modeling of the Arylthioindole Class of Tubulin Polymerization Inhibitors as Anticancer Agents.
Anticancer Agents Med Chem. 2017;17(4):552-565. doi: 10.2174/1871520616666160811162105.
8
Development of anti-HIV activity models of lysine sulfonamide analogs: a QSAR perspective.
Curr Comput Aided Drug Des. 2012 Mar;8(1):70-82. doi: 10.2174/157340912799218543.

引用本文的文献

1
FGTN: Fragment-based graph transformer network for predicting reproductive toxicity.
Arch Toxicol. 2024 Dec;98(12):4077-4092. doi: 10.1007/s00204-024-03866-4. Epub 2024 Sep 18.
2
Literature Review of (Q)SAR Modelling of Nanomaterial Toxicity.
Adv Exp Med Biol. 2017;947:103-142. doi: 10.1007/978-3-319-47754-1_5.
5
Computational analysis of HIV-1 protease protein binding pockets.
J Chem Inf Model. 2010 Oct 25;50(10):1759-71. doi: 10.1021/ci100200u.

本文引用的文献

2
Update of the Drug Resistance Mutations in HIV-1.
Top HIV Med. 2008 Dec;16(5):138-45.
4
Multilayer perceptrons: approximation order and necessary number of hidden units.
IEEE Trans Neural Netw. 2008 May;19(5):836-44. doi: 10.1109/TNN.2007.912306.
6
Modeling anti-Trypanosoma cruzi activity of N-oxide containing heterocycles.
J Chem Inf Model. 2008 Jan;48(1):213-9. doi: 10.1021/ci7002768. Epub 2007 Dec 29.
8
Predictive QSAR modeling for the successful predictions of the ADMET properties of candidate drug molecules.
Curr Drug Discov Technol. 2007 Oct;4(3):141-9. doi: 10.2174/157016307782109706.
10
High-throughput ligand screening via preclustering and evolved neural networks.
IEEE/ACM Trans Comput Biol Bioinform. 2007 Jul-Sep;4(3):476-484. doi: 10.1109/tcbb.2007.1038.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验