Suppr超能文献

遗传算法与偏最小二乘法相结合用于从分子结构预测非离子表面活性剂的浊点

Combination of genetic algorithm and partial least squares for cloud point prediction of nonionic surfactants from molecular structures.

作者信息

Ghasemi Jahanbakhsh, Ahmadi Shahin

机构信息

Chemistry Department, Faculty of Sciences, Razi University, Kermanshah, Iran.

出版信息

Ann Chim. 2007 Jan-Feb;97(1-2):69-83. doi: 10.1002/adic.200690087.

Abstract

Quantitative structure-property relationship (QSPR) analysis has been directed to a series of pure nonionic surfactants containing linear alkyl, cyclic alkyl, and alkey phenyl ethoxylates. Modeling of cloud point of these compounds as a function of the theoretically derived descriptors was established by multiple linear regression (MLR) and partial least squares (PLS) regression. In this study, a genetic algorithm (GA) was applied as a variable selection method in QSPR analysis. The results indicate that the GA is a very effective variable selection approach for QSPR analysis. The comparison of the two regression methods used showed that PLS has better prediction ability than MLR.

摘要

定量结构-性质关系(QSPR)分析针对的是一系列含有直链烷基、环烷基和烷基苯基乙氧基化物的纯非离子表面活性剂。通过多元线性回归(MLR)和偏最小二乘(PLS)回归建立了这些化合物的浊点与理论推导描述符之间的函数关系模型。在本研究中,遗传算法(GA)被用作QSPR分析中的变量选择方法。结果表明,GA是一种非常有效的QSPR分析变量选择方法。对所使用的两种回归方法的比较表明,PLS比MLR具有更好的预测能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验