Istituto di Studi sui Sistemi Intelligenti per l'Automazione, Consiglio Nazionale delle Ricerche, Via de Marini 6, 16149 Genova, Italy.
Neural Netw. 2010 Sep;23(7):917-25. doi: 10.1016/j.neunet.2010.03.003. Epub 2010 Mar 27.
A new efficient technique for estimating probability densities from data through the application of the approximate global maximum likelihood (AGML) approach is proposed. It employs a composition of kernel functions to estimate the correct behavior of parameters involved in the expression of the unknown probability density. Convergence to the optimal solution is guaranteed by a deterministic learning framework when low discrepancy sequences are used to generate the centers of the kernels. Trials on mixture of Gaussians show that the proposed semi-local technique is able to efficiently approximate the maximum likelihood solution even in complex situations where implementations based on standard neural networks require an excessive computational cost.
提出了一种通过应用近似全局最大似然 (AGML) 方法从数据中估计概率密度的新有效技术。它采用核函数的组合来估计未知概率密度表达式中涉及的参数的正确行为。当使用低差异序列生成核的中心时,确定性学习框架可保证收敛到最优解。在混合高斯的试验中表明,所提出的半局部技术能够有效地逼近最大似然解,即使在基于标准神经网络的实现需要过高计算成本的复杂情况下也是如此。