Institut de Bioenginyeria de Catalunya (IBEC), Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, and Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, E-08028 Barcelona, Spain.
IEEE Trans Biomed Eng. 2010 Aug;57(8):1927-36. doi: 10.1109/TBME.2010.2047505. Epub 2010 Apr 15.
The automatic differentiation of obstructive and central respiratory events is a major challenge in the diagnosis of sleep-disordered breathing. Esophageal pressure (Pes) measurement is the gold-standard method to identify these events. This study presents a new classifier that automatically differentiates obstructive and central hypopneas with the Pes signal and a new approach for an automatic noninvasive classifier with nasal airflow. An overall of 28 patients underwent night polysomnography with Pes recording, and a total of 769 hypopneas were manually scored by human experts to create a gold-standard annotation set. Features were automatically extracted from the Pes signal to train and test the classifiers (discriminant analysis, support vector machines, and adaboost). After a significantly (p < 0.01) higher incidence of inspiratory flow limitation episodes in obstructive hypopneas was objectively, invasively assessed compared to central hypopneas, the feasibility of an automatic noninvasive classifier with features extracted from the airflow signal was demonstrated. The automatic invasive classifier achieved a mean sensitivity, specificity, and accuracy of 0.90 after a 100-fold cross validation. The automatic noninvasive feasibility study obtained similar hypopnea differentiation results as a manual noninvasive classification algorithm. Hence, both systems seem promising for the automatic differentiation of obstructive and central hypopneas.
阻塞性和中枢性呼吸事件的自动区分是睡眠呼吸障碍诊断中的一个主要挑战。食管压力(Pes)测量是识别这些事件的金标准方法。本研究提出了一种新的分类器,该分类器可以使用 Pes 信号自动区分阻塞性和中枢性低通气,以及一种新的自动无创分类器方法,该方法使用鼻气流。共有 28 名患者接受了 Pes 记录的夜间多导睡眠图检查,共有 769 次低通气由人类专家手动评分,以创建金标准注释集。从 Pes 信号中自动提取特征来训练和测试分类器(判别分析、支持向量机和 adaboost)。在客观、侵入性地评估阻塞性低通气中吸气流量受限发作的发生率明显(p < 0.01)高于中枢性低通气后,展示了使用从气流信号中提取特征的自动无创分类器的可行性。自动侵入性分类器在 100 倍交叉验证后达到了 0.90 的平均灵敏度、特异性和准确性。自动无创可行性研究获得了与手动无创分类算法相似的低通气区分结果。因此,这两种系统似乎都有望用于自动区分阻塞性和中枢性低通气。