Department of Biological Science, Graduate School of Sciences, University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan.
Proc Natl Acad Sci U S A. 2010 May 11;107(19):8854-9. doi: 10.1073/pnas.1000177107. Epub 2010 Apr 19.
Responding to green and red light, certain cyanobacteria change the composition of their light-harvesting pigments, phycoerythrin (PE) and phycocyanin (PC). Although this phenomenon-complementary chromatic adaptation-is well known, the green light-sensing mechanism for PE accumulation is unclear. The filamentous cyanobacterium Nostoc punctiforme ATCC 29133 (N. punctiforme) regulates PE synthesis in response to green and red light (group II chromatic adaptation). We disrupted the green/red-perceiving histidine-kinase gene (ccaS) or the cognate response regulator gene (ccaR), which are clustered with several PE and PC genes (cpeC-cpcG2-cpeR1 operon) in N. punctiforme. Under green light, wild-type cells accumulated a significant amount of PE upon induction of cpeC-cpcG2-cpeR1 expression, whereas they accumulated little PE with suppression of cpeC-cpcG2-cpeR1 expression under red light. Under both green and red light, the ccaS mutant constitutively accumulated some PE with constitutively low cpeC-cpcG2-cpeR1 expression, whereas the ccaR mutant accumulated little PE with suppression of cpeC-cpcG2-cpeR1 expression. The results of an electrophoretic mobility shift assay suggest that CcaR binds to the promoter region of cpeC-cpcG2-cpeR1, which contains a conserved direct-repeat motif. Taken together, the results suggest that CcaS phosphorylates CcaR under green light and that phosphorylated CcaR then induces cpeC-cpcG2-cpeR1 expression, leading to PE accumulation. In contrast, CcaS probably represses cpeC-cpcG2-cpeR1 expression by dephosphorylation of CcaR under red light. We also found that the cpeB-cpeA operon is partially regulated by green and red light, suggesting that the green light-induced regulatory protein CpeR1 activates cpeB-cpeA expression together with constitutively induced CpeR2.
对绿光和红光做出响应时,某些蓝细菌会改变其光捕获色素藻红蛋白(PE)和藻蓝蛋白(PC)的组成。尽管这种现象——补色适应——是众所周知的,但对于 PE 积累的绿光感应机制尚不清楚。丝状蓝细菌念珠藻 N. punctiforme ATCC 29133(N. punctiforme)会响应绿光和红光(II 型色适应)来调节 PE 的合成。我们敲除了绿色/红色感知组氨酸激酶基因(ccaS)或同源响应调节基因(ccaR),它们与几个 PE 和 PC 基因(cpeC-cpcG2-cpeR1 操纵子)在 N. punctiforme 中聚集在一起。在绿光下,野生型细胞在 cpeC-cpcG2-cpeR1 表达诱导时会积累大量的 PE,而在红光下 cpeC-cpcG2-cpeR1 表达被抑制时则很少积累 PE。在绿光和红光下,ccaS 突变体的 cpeC-cpcG2-cpeR1 表达持续较低,因此持续积累一些 PE,而 ccaR 突变体在 cpeC-cpcG2-cpeR1 表达被抑制时则很少积累 PE。电泳迁移率变动分析的结果表明,CcaR 结合到 cpeC-cpcG2-cpeR1 的启动子区域,该区域包含一个保守的直接重复基序。综合起来,结果表明 CcaS 在绿光下使 CcaR 磷酸化,然后磷酸化的 CcaR 诱导 cpeC-cpcG2-cpeR1 的表达,导致 PE 的积累。相反,在红光下,CcaS 可能通过 CcaR 的去磷酸化来抑制 cpeC-cpcG2-cpeR1 的表达。我们还发现 cpeB-cpeA 操纵子部分受绿光和红光调控,这表明绿光诱导的调节蛋白 CpeR1 与组成性诱导的 CpeR2 一起激活 cpeB-cpeA 的表达。