Suppr超能文献

喷雾用复水冻干载利福平的 mPEG-DSPE 制剂。

Rehydrated lyophilized rifampicin-loaded mPEG-DSPE formulations for nebulization.

机构信息

Institute of Health, Sebha University, Sebha, Libya.

出版信息

AAPS PharmSciTech. 2010 Jun;11(2):663-71. doi: 10.1208/s12249-010-9428-6. Epub 2010 Apr 20.

Abstract

Rifampicin-loaded nanoparticles were prepared using two different molecular weights of poly-(ethylene oxide)-block-distearoyl phosphatidyl-ethanolamine (mPEG2000-DSPE and mPEG5000-DSPE) polymers. Particle sizes of all formulations studied were in the range of 162-395 nm. The entrapment efficiency (EE) was not affected by the copolymer's molecular weight, and the highest EE (100%) was obtained with drug to copolymer ratio of 1:5. The differential scanning calorimetry (DSC) thermograms showed Tg of rifampicin-loaded PEG-DSPE nanoparticles that shifted to a lower value, indicating entrapment of rifampicin in polymer matrix. The Fourier transformed infrared spectra revealed no chemical interactions between the drug and both copolymers. The in vitro drug release from the formulations occurred over 3 days and followed first-order release kinetic and Higuchi diffusion model. The nebulization of rehydrated lyophilized rifampicin mPEG-DSPE formulations had mass median aerodynamic diameter of 2.6 microm and fine particle fraction of 42%. The aerodynamic characteristic of the preparations was not influenced by the molecular weight of the copolymers. Therefore, it is suggested that both mPEG-DSPE are promising candidates as rifampicin carrier for pulmonary delivery.

摘要

载利福平纳米粒采用两种不同相对分子质量的聚(氧化乙烯)-嵌段-二硬脂酰基磷脂酰乙醇胺(mPEG2000-DSPE 和 mPEG5000-DSPE)聚合物制备。所有研究配方的粒径均在 162-395nm 范围内。包封效率(EE)不受共聚物相对分子质量的影响,当药物与共聚物的比例为 1:5 时,EE 最高(100%)。差示扫描量热法(DSC)图谱显示,载利福平 PEG-DSPE 纳米粒的 Tg 向较低值移动,表明利福平被包埋在聚合物基质中。傅里叶变换红外光谱显示药物与两种共聚物之间没有化学相互作用。制剂中药物的体外释放持续了 3 天,遵循一级释放动力学和 Higuchi 扩散模型。复水冻干利福平 mPEG-DSPE 制剂的雾化后,质量中值空气动力学直径为 2.6 微米,细颗粒分数为 42%。制剂的空气动力学特性不受共聚物相对分子质量的影响。因此,建议 mPEG-DSPE 均为有前途的利福平肺部给药载体。

相似文献

1
Rehydrated lyophilized rifampicin-loaded mPEG-DSPE formulations for nebulization.
AAPS PharmSciTech. 2010 Jun;11(2):663-71. doi: 10.1208/s12249-010-9428-6. Epub 2010 Apr 20.
3
Characterization of polymeric micelles for pulmonary delivery of beclomethasone dipropionate.
J Nanosci Nanotechnol. 2006 Sep-Oct;6(9-10):3095-101. doi: 10.1166/jnn.2006.426.
5
Supercritical antisolvent co-precipitation of rifampicin and ethyl cellulose.
Eur J Pharm Sci. 2017 May 1;102:161-171. doi: 10.1016/j.ejps.2017.03.016. Epub 2017 Mar 14.
6
Preparation of sustained release rifampicin microparticles for inhalation.
J Pharm Pharmacol. 2012 Sep;64(9):1291-302. doi: 10.1111/j.2042-7158.2012.01531.x. Epub 2012 Jul 9.
7
Preparation and characterization of paclitaxel-loaded DSPE-PEG-liquid crystalline nanoparticles (LCNPs) for improved bioavailability.
Int J Pharm. 2012 Mar 15;424(1-2):58-66. doi: 10.1016/j.ijpharm.2011.12.058. Epub 2012 Jan 8.
9
Microfluidic fabrication and characterization of Sorafenib-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery.
Int J Pharm. 2020 May 15;581:119275. doi: 10.1016/j.ijpharm.2020.119275. Epub 2020 Mar 27.

引用本文的文献

1
Phase-transition engineered semi-metallic CuPdN for photothermal-enhanced cuproptosis-induced cancer therapy.
Mater Today Bio. 2025 May 29;32:101927. doi: 10.1016/j.mtbio.2025.101927. eCollection 2025 Jun.
3
Thermotropic effects of PEGylated lipids on the stability of HPPH-encapsulated lipid nanoparticles (LNP).
J Therm Anal Calorim. 2022;147(11):6337-6348. doi: 10.1007/s10973-021-10929-6. Epub 2021 Jun 26.
7
Clinical experimentation with aerosol antibiotics: current and future methods of administration.
Drug Des Devel Ther. 2013 Oct 2;7:1115-34. doi: 10.2147/DDDT.S51303. eCollection 2013.
8
Nanotechnology and pulmonary delivery to overcome resistance in infectious diseases.
Adv Drug Deliv Rev. 2013 Nov;65(13-14):1816-27. doi: 10.1016/j.addr.2013.07.020. Epub 2013 Aug 7.

本文引用的文献

1
Targeted delivery of nanoparticles for the treatment of lung diseases.
Adv Drug Deliv Rev. 2008 May 22;60(8):863-75. doi: 10.1016/j.addr.2007.11.006. Epub 2008 Feb 6.
2
Nanoparticles for drug delivery to the lungs.
Trends Biotechnol. 2007 Dec;25(12):563-70. doi: 10.1016/j.tibtech.2007.09.005. Epub 2007 Nov 8.
3
Alginate microspheres of isoniazid for oral sustained drug delivery.
Int J Pharm. 2007 Apr 4;334(1-2):71-7. doi: 10.1016/j.ijpharm.2006.10.024. Epub 2006 Oct 21.
4
Nanoparticles--a historical perspective.
Int J Pharm. 2007 Feb 22;331(1):1-10. doi: 10.1016/j.ijpharm.2006.10.021. Epub 2006 Oct 21.
5
Characterization of polymeric micelles for pulmonary delivery of beclomethasone dipropionate.
J Nanosci Nanotechnol. 2006 Sep-Oct;6(9-10):3095-101. doi: 10.1166/jnn.2006.426.
8
In vitro comparison of nebulised budesonide (Pulmicort Respules) and beclomethasone dipropionate (Clenil per Aerosol).
Pulm Pharmacol Ther. 2005;18(2):151-3. doi: 10.1016/j.pupt.2004.10.004. Epub 2004 Dec 20.
9
Solid-state characterization of rifampicin samples and its biopharmaceutic relevance.
Eur J Pharm Sci. 2004 Jun;22(2-3):127-44. doi: 10.1016/j.ejps.2004.02.011.
10
Osmotically regulated asymmetric capsular systems for simultaneous sustained delivery of anti-tubercular drugs.
J Control Release. 2004 Mar 5;95(2):239-48. doi: 10.1016/j.jconrel.2003.11.013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验