Suppr超能文献

宏观颗粒在深海耗氧中的作用。

Role of macroscopic particles in deep-sea oxygen consumption.

机构信息

Ocean, Earth and Atmospheric Sciences, Old Dominion University, Norfolk, VA 23529, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 May 4;107(18):8287-91. doi: 10.1073/pnas.0913744107. Epub 2010 Apr 20.

Abstract

Macroscopic particles (>500 mum), including marine snow, large migrating zooplankton, and their fast-sinking fecal pellets, represent primary vehicles of organic carbon flux from the surface to the deep sea. In contrast, freely suspended microscopic particles such as bacteria and protists do not sink, and they contribute the largest portion of metabolism in the upper ocean. In bathy- and abyssopelagic layers of the ocean (2,000-6,000 m), however, microscopic particles may not dominate oxygen consumption. In a section across the tropical Atlantic, we show that macroscopic particle peaks occurred frequently in the deep sea, whereas microscopic particles were barely detectable. In 10 of 17 deep-sea profiles (>2,000 m depth), macroscopic particle abundances were more strongly cross-correlated with oxygen deficits than microscopic particles, suggesting that biomass bound to large particles dominates overall deep-sea metabolism.

摘要

宏观颗粒(>500 微米),包括海洋雪、大型洄游浮游动物及其快速下沉的粪便颗粒,是有机碳从表层向深海输送的主要载体。相比之下,自由悬浮的微观颗粒,如细菌和原生动物,不会下沉,它们是上层海洋代谢的最大贡献者。然而,在海洋的深海层和深渊层(2000-6000 米),微观颗粒可能不会主导氧气消耗。在穿越热带大西洋的一段剖面中,我们发现宏观颗粒峰值经常出现在深海中,而微观颗粒几乎无法检测到。在 17 个深海剖面中的 10 个(>2000 米深度)中,宏观颗粒丰度与氧气亏缺的交叉相关性比微观颗粒更强,这表明与大颗粒结合的生物量主导着整个深海代谢。

相似文献

1
Role of macroscopic particles in deep-sea oxygen consumption.
Proc Natl Acad Sci U S A. 2010 May 4;107(18):8287-91. doi: 10.1073/pnas.0913744107. Epub 2010 Apr 20.
3
Carbon Export in the Ocean: A Biologist's Perspective.
Ann Rev Mar Sci. 2023 Jan 16;15:357-381. doi: 10.1146/annurev-marine-032122-035153. Epub 2022 Sep 2.
4
Sinking particles promote vertical connectivity in the ocean microbiome.
Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):E6799-E6807. doi: 10.1073/pnas.1802470115. Epub 2018 Jul 2.
5
Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean.
Proc Natl Acad Sci U S A. 2019 Jun 11;116(24):11824-11832. doi: 10.1073/pnas.1903080116. Epub 2019 May 24.
6
Major imprint of surface plankton on deep ocean prokaryotic structure and activity.
Mol Ecol. 2020 May;29(10):1820-1838. doi: 10.1111/mec.15454. Epub 2020 May 25.
7
Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow.
ISME J. 2017 Feb;11(2):362-373. doi: 10.1038/ismej.2016.113. Epub 2016 Sep 20.
8
Prokaryotic niche partitioning between suspended and sinking marine particles.
Environ Microbiol Rep. 2019 Jun;11(3):386-400. doi: 10.1111/1758-2229.12692. Epub 2018 Oct 16.
9
A Visual Tour of Carbon Export by Sinking Particles.
Global Biogeochem Cycles. 2021 Oct;35(10):e2021GB006985. doi: 10.1029/2021GB006985. Epub 2021 Oct 22.

引用本文的文献

1
Spatial variation and metabolic diversity of microbial communities in the surface sediments of the Mariana Trench.
Front Microbiol. 2022 Dec 5;13:1051999. doi: 10.3389/fmicb.2022.1051999. eCollection 2022.
2
Limited carbon cycling due to high-pressure effects on the deep-sea microbiome.
Nat Geosci. 2022;15(12):1041-1047. doi: 10.1038/s41561-022-01081-3. Epub 2022 Nov 28.
4
Microbial Eukaryotes Associated With Sediments in Deep-Sea Cold Seeps.
Front Microbiol. 2021 Dec 22;12:782004. doi: 10.3389/fmicb.2021.782004. eCollection 2021.
5
Predation risk triggers copepod small-scale behavior in the Baltic Sea.
J Plankton Res. 2020 Oct 13;42(6):702-713. doi: 10.1093/plankt/fbaa044. eCollection 2020 Nov-Dec.
6
Linking extracellular enzymes to phylogeny indicates a predominantly particle-associated lifestyle of deep-sea prokaryotes.
Sci Adv. 2020 Apr 15;6(16):eaaz4354. doi: 10.1126/sciadv.aaz4354. eCollection 2020 Apr.
7
Double Maximum Ratios of Viruses to Bacteria in the Water Column: Implications for Different Regulating Mechanisms.
Front Microbiol. 2019 Jul 16;10:1593. doi: 10.3389/fmicb.2019.01593. eCollection 2019.
9
High Growth Potential of Long-Term Starved Deep Ocean Opportunistic Heterotrophic Bacteria.
Front Microbiol. 2019 Apr 10;10:760. doi: 10.3389/fmicb.2019.00760. eCollection 2019.
10
Spatial Variability of Picoeukaryotic Communities in the Mariana Trench.
Sci Rep. 2018 Oct 18;8(1):15357. doi: 10.1038/s41598-018-33790-4.

本文引用的文献

1
Viral abundance, decay, and diversity in the meso- and bathypelagic waters of the north atlantic.
Appl Environ Microbiol. 2007 Jul;73(14):4429-38. doi: 10.1128/AEM.00029-07. Epub 2007 May 11.
2
Revisiting carbon flux through the ocean's twilight zone.
Science. 2007 Apr 27;316(5824):567-70. doi: 10.1126/science.1137959.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验