Department of Electrical and Computer Engineering, The University of Memphis, Engineering Science Building, Memphis, TN 38152-3180, USA.
Exp Biol Med (Maywood). 2010 Apr;235(4):539-45. doi: 10.1258/ebm.2010.009253.
The published guidelines point out the need for the development of methods that individualize patient cerebral perfusion management and minimize secondary ischemic complications associated with traumatic brain injury. A laboratory method has been developed to determine model-derived assessments of cerebrovascular resistance (mCVR) and cerebral blood flow (mCBF) from cerebrovascular pressure transmission, and the dynamic relationship between arterial blood pressure (ABP) and intracranial pressure (ICP). The aim of this two-fold study is to (1) evaluate relative changes in the model-derived parameters of mCVR and mCBF with the corresponding changes in the pial arteriolar vascular parameters of pial arteriolar resistance (PAR) and relative pial arteriolar blood flow (rPABF); and (2) examine the efficacy of the proposed modeling methodology for continuous assessment of the state of cerebrovascular regulation by evaluating relative changes in the model-derived parameters of CBF and cerebrovascular resistance in relation to changes of cerebral perfusion pressure prior to and following fluid percussion brain injury. Changes of ABP, ICP, PAR, relative arteriolar blood flow (rPABF) and the corresponding model-derived parameters of mCBF and mCVR induced by acute hypertensive challenge were evaluated before and following fluid percussion injury in piglets equipped with cranial windows. Before fluid percussion, hypertensive challenge resulted in a significant increase of PAR and mCVR, whereas both rPABF and mCBF remained constant. Following fluid percussion, hypertensive challenge resulted in a significant decrease of PAR and mCVR and consistent with impaired cerebrovascular regulation. Hypertensive challenge significantly increased both rPABF and mCBF, which approximately doubled with increased CPP with correlation values of r = 0.96 (P < 0.01) and r = 0.97 (P <or= 0.01), respectively. The assessment of model-derived cerebrovascular resistance and CBF with changes of CPP provides a means to monitor continuously the state of cerebrovascular regulation.
发表的指南指出,需要开发方法,使患者脑灌注管理个体化,并最大限度地减少与创伤性脑损伤相关的继发性缺血性并发症。已经开发出一种实验室方法来确定从脑血管压力传递和动脉血压 (ABP) 和颅内压 (ICP) 之间的动态关系中得出的脑血管阻力 (mCVR) 和脑血流量 (mCBF) 的模型衍生评估。这项双重研究的目的是:(1) 评估模型衍生的 mCVR 和 mCBF 参数与脑小动脉阻力 (PAR) 和相对脑小动脉血流 (rPABF) 的相应变化之间的相对变化;(2) 通过评估在液压冲击脑损伤前后与脑灌注压变化相关的 CBF 和脑血管阻力的模型衍生参数的相对变化,检查所提出的建模方法在连续评估脑血管调节状态方面的有效性。在配备颅窗的仔猪中,评估了急性高血压挑战引起的 ABP、ICP、PAR、相对小动脉血流 (rPABF) 以及 mCBF 和 mCVR 的相应模型衍生参数的变化。在液压冲击之前,高血压挑战导致 PAR 和 mCVR 显著增加,而 rPABF 和 mCBF 保持不变。在液压冲击后,高血压挑战导致 PAR 和 mCVR 显著降低,表明脑血管调节受损。高血压挑战显著增加了 rPABF 和 mCBF,CPP 增加时,rPABF 和 mCBF 分别增加了约两倍,相关值 r = 0.96 (P < 0.01) 和 r = 0.97 (P < 0.01)。通过 CPP 的变化评估模型衍生的脑血管阻力和 CBF 为连续监测脑血管调节状态提供了一种手段。