Suppr超能文献

间质干细胞软骨生成中的肥大:TGF-β同工型和软骨生成条件的影响。

Hypertrophy in mesenchymal stem cell chondrogenesis: effect of TGF-beta isoforms and chondrogenic conditioning.

机构信息

Department for Trauma Surgery, Regensburg University Medical Center, Regensburg, Germany.

出版信息

Cells Tissues Organs. 2010;192(3):158-66. doi: 10.1159/000313399. Epub 2010 Apr 20.

Abstract

Induction of chondrogenesis in mesenchymal stem cells (MSCs) with TGF-beta leads to a hypertrophic phenotype. The hypertrophic maturation of the chondrocytes is dependent on the timed removal of TGF-beta and sensitive to hypertrophy-promoting agents in vitro. In this study, we have investigated whether TGF-beta3, which has been shown to be more prochondrogenic compared to TGF-beta1, similarly enhances terminal differentiation in an in vitro hypertrophy model of chondrogenically differentiating MSCs. In addition, we tested the impact of the time of chondrogenic conditioning on the enhancement of hypertrophy. MSCs were chondrogenically differentiated in pellet culture in medium containing TGF-beta1 or TGF-beta3. After 2 or 4 weeks, chondrogenic medium was switched to hypertrophy-inducing medium for 2 weeks. Aggregates were analyzed histologically and biochemically on days 14, 28 and 42. The switch to hypertrophy medium after 14 days induced hypertrophic cell morphology and significant increase in alkaline phosphatase activity compared to the chondrogenesis only control using both TGF-beta1 and TGF-beta3. After 28 days predifferentiation, differences between hypertrophic and control groups diminished compared to 14 days predifferentiation. In conclusion, chondrogenic conditioning with both TGF-beta isoforms similarly induced hypertrophy in our experiment and allowed the enhancement of the hypertrophic chondrocyte phenotype by hypertrophic medium. Enhancement of hypertrophy was seen more clearly after the shorter chondrogenic conditioning. Therefore, to utilize this experimental model as a tool to study hypertrophy in MSC chondrogenesis, a predifferentiation period of 14 days is recommended.

摘要

转化生长因子-β(TGF-β)诱导间充质干细胞(MSCs)向软骨细胞分化会导致细胞出现肥大表型。软骨细胞的肥大成熟依赖于 TGF-β的适时去除,并且在体外对促进肥大的试剂敏感。在这项研究中,我们研究了与 TGF-β1 相比,具有更强软骨形成能力的 TGF-β3 是否同样会增强体外软骨形成的 MSC 肥大分化模型中的终末分化。此外,我们还测试了软骨形成条件作用时间对促进肥大的影响。MSCs 在含 TGF-β1 或 TGF-β3 的培养基中以微球体培养的方式进行软骨分化。2 或 4 周后,将软骨形成培养基切换为肥大诱导培养基培养 2 周。在第 14、28 和 42 天对聚集物进行组织学和生化分析。与仅用 TGF-β1 和 TGF-β3 的软骨形成对照相比,在第 14 天切换到肥大培养基会诱导出肥大细胞形态,并显著增加碱性磷酸酶活性。在预分化 28 天后,与预分化 14 天后相比,肥大组与对照组之间的差异减小。总之,在我们的实验中,两种 TGF-β 同工型的软骨形成条件作用均会相似地诱导肥大,并且允许通过肥大培养基增强肥大的软骨细胞表型。在较短的软骨形成条件作用后,更明显地增强了肥大作用。因此,为了将此实验模型用作研究 MSC 软骨形成中肥大的工具,建议将预分化时间设为 14 天。

相似文献

1
Hypertrophy in mesenchymal stem cell chondrogenesis: effect of TGF-beta isoforms and chondrogenic conditioning.
Cells Tissues Organs. 2010;192(3):158-66. doi: 10.1159/000313399. Epub 2010 Apr 20.
3
Effect of parathyroid hormone-related protein in an in vitro hypertrophy model for mesenchymal stem cell chondrogenesis.
Int Orthop. 2013 May;37(5):945-51. doi: 10.1007/s00264-013-1800-1. Epub 2013 Jan 31.
5
PTHrP isoforms have differing effect on chondrogenic differentiation and hypertrophy of mesenchymal stem cells.
Biochem Biophys Res Commun. 2012 May 18;421(4):819-24. doi: 10.1016/j.bbrc.2012.04.096. Epub 2012 Apr 25.
8
Gelatin microspheres containing TGF-beta3 enhance the chondrogenesis of mesenchymal stem cells in modified pellet culture.
Biomacromolecules. 2008 Mar;9(3):927-34. doi: 10.1021/bm7013203. Epub 2008 Feb 13.

引用本文的文献

3
A platform for Bioengineering Tissue Membranes from cell spheroids.
Mater Today Bio. 2025 Jan 31;31:101526. doi: 10.1016/j.mtbio.2025.101526. eCollection 2025 Apr.
4
3D Porous Polycaprolactone with Chitosan-Graft-PCL Modified Surface for In Situ Tissue Engineering.
Polymers (Basel). 2025 Jan 30;17(3):383. doi: 10.3390/polym17030383.
5
Characterization of Thin Polymer Layer Prepared from Liposomes and Polyelectrolytes for TGF-β Release in Tissue Engineering.
Macromol Biosci. 2025 Apr;25(4):e2400447. doi: 10.1002/mabi.202400447. Epub 2025 Jan 13.
7
Small spheroids for head and neck cartilage tissue engineering.
Sci Rep. 2024 Dec 30;14(1):32114. doi: 10.1038/s41598-024-83847-w.
10
Regenerative capacity of human pluripotent stem cell-derived articular chondrocytes in vitro.
J Orthop Res. 2024 Aug;42(8):1841-1851. doi: 10.1002/jor.25823. Epub 2024 Mar 3.

本文引用的文献

1
Functional characterization of hypertrophy in chondrogenesis of human mesenchymal stem cells.
Arthritis Rheum. 2008 May;58(5):1377-88. doi: 10.1002/art.23370.
2
Growth and differentiation of the developing limb bud from the perspective of chondrogenesis.
Dev Growth Differ. 2007 Aug;49(6):449-54. doi: 10.1111/j.1440-169X.2007.00945.x.
7
The control of chondrogenesis.
J Cell Biochem. 2006 Jan 1;97(1):33-44. doi: 10.1002/jcb.20652.
8
Morphological examination during in vitro cartilage formation by human mesenchymal stem cells.
Cell Tissue Res. 2005 Nov;322(2):217-26. doi: 10.1007/s00441-005-1140-6. Epub 2005 Nov 3.
9
Cellular and molecular events during chondrogenesis of human mesenchymal stromal cells grown in a three-dimensional hyaluronan based scaffold.
Biomaterials. 2005 Oct;26(28):5677-86. doi: 10.1016/j.biomaterials.2005.02.031. Epub 2005 Apr 8.
10
Mesenchymal stem cell-based cartilage tissue engineering: cells, scaffold and biology.
Cytotherapy. 2004;6(6):596-601. doi: 10.1080/14653240410005276-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验