Suppr超能文献

基于差异数据的半监督学习。

Semisupervised learning from dissimilarity data.

作者信息

Trosset Michael W, Priebe Carey E, Park Youngser, Miller Michael I

机构信息

Department of Statistics, Indiana University, Bloomington, IN 47405, USA.

出版信息

Comput Stat Data Anal. 2008 Jun 15;52(10):4643-4657. doi: 10.1016/j.csda.2008.02.030.

Abstract

The following two-stage approach to learning from dissimilarity data is described: (1) embed both labeled and unlabeled objects in a Euclidean space; then (2) train a classifier on the labeled objects. The use of linear discriminant analysis for (2), which naturally invites the use of classical multidimensional scaling for (1), is emphasized. The choice of the dimension of the Euclidean space in (1) is a model selection problem; too few or too many dimensions can degrade classifier performance. The question of how the inclusion of unlabeled objects in (1) affects classifier performance is investigated. In the case of spherical covariances, including unlabeled objects in (1) is demonstrably superior. Several examples are presented.

摘要

本文描述了一种从差异数据中学习的两阶段方法

(1) 将有标签和无标签的对象嵌入欧几里得空间;然后 (2) 在有标签的对象上训练分类器。强调在 (2) 中使用线性判别分析,这自然会促使在 (1) 中使用经典多维缩放。(1) 中欧几里得空间维度的选择是一个模型选择问题;维度太少或太多都会降低分类器性能。研究了在 (1) 中包含无标签对象如何影响分类器性能的问题。在球形协方差的情况下,在 (1) 中包含无标签对象明显更优。给出了几个例子。

相似文献

1
Semisupervised learning from dissimilarity data.基于差异数据的半监督学习。
Comput Stat Data Anal. 2008 Jun 15;52(10):4643-4657. doi: 10.1016/j.csda.2008.02.030.
2
Spherical and Hyperbolic Embeddings of Data.球面和双曲嵌入数据。
IEEE Trans Pattern Anal Mach Intell. 2014 Nov;36(11):2255-69. doi: 10.1109/TPAMI.2014.2316836.
4
Semisupervised Feature Selection via Structured Manifold Learning.基于结构流形学习的半监督特征选择。
IEEE Trans Cybern. 2022 Jul;52(7):5756-5766. doi: 10.1109/TCYB.2021.3052847. Epub 2022 Jul 4.
6
Semisupervised generalized discriminant analysis.半监督广义判别分析
IEEE Trans Neural Netw. 2011 Aug;22(8):1207-17. doi: 10.1109/TNN.2011.2156808. Epub 2011 Jun 30.
8
Joint Label Inference and Discriminant Embedding.联合标签推理与判别式嵌入
IEEE Trans Neural Netw Learn Syst. 2022 Sep;33(9):4413-4423. doi: 10.1109/TNNLS.2021.3057270. Epub 2022 Aug 31.
9
How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning.如何信任未标记的数据?小样本学习中的实例可信度推断。
IEEE Trans Pattern Anal Mach Intell. 2022 Oct;44(10):6240-6253. doi: 10.1109/TPAMI.2021.3086140. Epub 2022 Sep 14.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验