Prieto N, Ross D W, Navajas E A, Nute G R, Richardson R I, Hyslop J J, Simm G, Roehe R
Sustainable Livestock Systems Group, Scottish Agricultural College, West Mains Road, Edinburgh EH9 3JG, UK.
Meat Sci. 2009 Sep;83(1):96-103. doi: 10.1016/j.meatsci.2009.04.005. Epub 2009 Apr 12.
The aim of this study was to assess the on-line implementation of visible and near infrared reflectance (Vis-NIR) spectroscopy as an early predictor of beef quality traits, by direct application of a fibre-optic probe to the muscle immediately after exposing the meat surface in the abattoir. Samples from M.longissimus thoracis from 194 heifers and steers were scanned at quartering 48h postmortem over the Vis-NIR spectral range from 350 to 1800nm. Thereafter, samples from M.longissimus thoraciset lumborum were analysed for colour (L(∗), a(∗), b(∗); 48h postmortem), cooking loss (14 days postmortem), instrumental texture (Volodkevitch, 10 days aged meat; slice shear force, 3 and 14 days aged meat) and sensory characteristics. Vis-NIR calibrations, tested by cross-validation, showed high predictability for L(∗), a(∗) and b(∗) (R(2)=0.86, 0.86 and 0.91; SE(CV)=0.96, 0.95 and 0.69, respectively). The accuracy of Vis-NIR to estimate cooking loss and instrumental texture ranged from R(2)=0.31 to 0.54, suggesting relatively low prediction ability. Sensory characteristics assessed on 14 days aged meat samples showed R(2) in the range from 0.21 (juiciness) to 0.59 (flavour). Considering the subjective assessment of sensory characteristics the correlations of Vis-NIR measurements and several meat quality traits in the range from 0.46 to 0.95 support the use of on-line Vis-NIR in the abattoir. Improvement of predictability was achieved if only extreme classes of meat characteristics have to be predicted by Vis-NIR spectroscopy.
本研究的目的是通过在屠宰场暴露肉表面后立即将光纤探头直接应用于肌肉,评估可见和近红外反射光谱(Vis-NIR)技术作为牛肉品质特征早期预测指标的在线实施情况。对194头小母牛和公牛的胸最长肌样本在宰后48小时四分体分割时,在350至1800nm的Vis-NIR光谱范围内进行扫描。此后,对胸腰最长肌样本进行颜色(L(∗)、a(∗)、b(∗);宰后48小时)、蒸煮损失(宰后14天)、仪器质地(Volodkevitch,陈化10天的肉;切片剪切力,陈化3天和14天的肉)和感官特性分析。通过交叉验证测试的Vis-NIR校准对L(∗)、a(∗)和b(∗)显示出高预测性(R(2)=0.86、0.86和0.91;SE(CV)分别为0.96、0.95和0.69)。Vis-NIR估计蒸煮损失和仪器质地的准确性范围为R(2)=0.31至0.54,表明预测能力相对较低。对陈化14天的肉样进行的感官特性评估显示,R(2)在0.21(多汁性)至0.59(风味)范围内。考虑到感官特性的主观评估,Vis-NIR测量与几种肉质性状的相关性在0.46至0.95之间,支持在屠宰场使用在线Vis-NIR。如果仅需通过Vis-NIR光谱预测极端类别的肉特征,则可提高预测性。