Department of Nuclear Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
Int J Radiat Oncol Biol Phys. 2010 Dec 1;78(5):1494-502. doi: 10.1016/j.ijrobp.2010.02.020. Epub 2010 Apr 24.
Protection of bone marrow against radiotoxicity during radioimmunotherapy and in some cases external beam radiation therapy such as hemi-body irradiation would permit administration of significantly higher doses to tumors, resulting in increased efficacy and safety of treatment. Melanin, a naturally occurring pigment, possesses radioprotective properties. We hypothesized that melanin, which is insoluble, could be delivered to the bone marrow by intravenously administrated melanin-covered nanoparticles (MNs) because of the human body's "self-sieving" ability, protecting it against ionizing radiation.
The synthesis of MNs was performed via enzymatic polymerization of 3,4-dihydroxyphenylalanine and/or 5-S-cysteinyl-3,4-dihydroxyphenylalanine on the surface of 20-nm plain silica nanoparticles. The biodistribution of radiolabeled MNs in mice was done at 3 and 24 h. Healthy CD-1 mice (Charles River Laboratories International, Inc., Wilmington, MA) or melanoma tumor-bearing nude mice were given MNs intravenously, 50 mg/kg of body weight, 3 h before either whole-body exposure to 125 cGy or treatment with 1 mCi of (188)Re-labeled 6D2 melanin-binding antibody.
Polymerization of melanin precursors on the surface of silica nanoparticles resulted in formation of a 15-nm-thick melanin layer as confirmed by light scattering, transmission electron microscopy, and immunofluorescence. The biodistribution after intravenous administration showed than MN uptake in bone marrow was 0.3% and 0.2% of injected dose per gram at 3 and 24 h, respectively, whereas pre-injection with pluronic acid increased the uptake to 6% and 3% of injected dose per gram, respectively. Systemic MN administration reduced hematologic toxicity in mice treated with external radiation or radioimmunotherapy, whereas no tumor protection by MNs was observed.
MNs or similar structures provide a novel approach to protection of bone marrow from ionizing radiation based on prevention of free radical formation by melanin.
在放射性免疫治疗中,以及在某些情况下,如半身全身照射放疗中,保护骨髓免受放射性毒性,可使肿瘤接受更高剂量的治疗,从而提高治疗的疗效和安全性。黑色素是一种天然存在的色素,具有放射防护特性。我们假设黑色素是不溶的,通过静脉给予黑色素覆盖的纳米颗粒(MNs)可以将其输送到骨髓中,因为人体具有“自我筛选”的能力,可以防止其受到电离辐射。
MNs 的合成是通过在 20nm 普通硅纳米颗粒表面上进行 3,4-二羟基苯丙氨酸和/或 5-S-半胱氨酰-3,4-二羟基苯丙氨酸的酶聚合反应来完成的。在 3 和 24 小时时,在小鼠中进行了放射性标记的 MNs 的生物分布。健康的 CD-1 小鼠(Charles River Laboratories International,Inc.,威明顿,MA)或黑色素瘤荷瘤裸鼠在全身暴露于 125 cGy 或用 1 mCi 的(188)Re 标记的 6D2 黑色素结合抗体治疗前 3 小时静脉给予 MNs,体重 50mg/kg。
黑色素前体在硅纳米颗粒表面的聚合反应导致形成了 15nm 厚的黑色素层,这通过光散射、透射电子显微镜和免疫荧光证实。静脉给药后的生物分布显示,骨髓中 MN 的摄取量分别为注射剂量的 0.3%和 0.2%,在 3 和 24 小时时,而在预注射聚氧乙烯月桂醚酸后,分别为注射剂量的 6%和 3%。全身 MN 给药可降低接受外照射或放射性免疫治疗的小鼠的血液毒性,而 MN 对肿瘤无保护作用。
MNs 或类似结构为基于黑色素防止自由基形成的方法提供了一种保护骨髓免受电离辐射的新方法。