Suppr超能文献

离子通道密度调节胞体中常规放电和快速放电之间的转换,但不调节轴突中的转换。

Ion channel density regulates switches between regular and fast spiking in soma but not in axons.

机构信息

The Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.

出版信息

PLoS Comput Biol. 2010 Apr 22;6(4):e1000753. doi: 10.1371/journal.pcbi.1000753.

Abstract

The threshold firing frequency of a neuron is a characterizing feature of its dynamical behaviour, in turn determining its role in the oscillatory activity of the brain. Two main types of dynamics have been identified in brain neurons. Type 1 dynamics (regular spiking) shows a continuous relationship between frequency and stimulation current (f-I(stim)) and, thus, an arbitrarily low frequency at threshold current; Type 2 (fast spiking) shows a discontinuous f-I(stim) relationship and a minimum threshold frequency. In a previous study of a hippocampal neuron model, we demonstrated that its dynamics could be of both Type 1 and Type 2, depending on ion channel density. In the present study we analyse the effect of varying channel density on threshold firing frequency on two well-studied axon membranes, namely the frog myelinated axon and the squid giant axon. Moreover, we analyse the hippocampal neuron model in more detail. The models are all based on voltage-clamp studies, thus comprising experimentally measurable parameters. The choice of analysing effects of channel density modifications is due to their physiological and pharmacological relevance. We show, using bifurcation analysis, that both axon models display exclusively Type 2 dynamics, independently of ion channel density. Nevertheless, both models have a region in the channel-density plane characterized by an N-shaped steady-state current-voltage relationship (a prerequisite for Type 1 dynamics and associated with this type of dynamics in the hippocampal model). In summary, our results suggest that the hippocampal soma and the two axon membranes represent two distinct kinds of membranes; membranes with a channel-density dependent switching between Type 1 and 2 dynamics, and membranes with a channel-density independent dynamics. The difference between the two membrane types suggests functional differences, compatible with a more flexible role of the soma membrane than that of the axon membrane.

摘要

神经元的阈发放频率是其动力学行为的一个特征,进而决定了它在大脑振荡活动中的作用。大脑神经元的动力学行为主要有两种类型。第一类动力学(规则放电)显示频率与刺激电流(f-I(stim))之间存在连续关系,因此在阈电流下可以任意降低频率;第二类动力学(快速放电)显示 f-I(stim)关系不连续,存在最小阈频率。在之前对海马神经元模型的研究中,我们证明了其动力学可以是第一类和第二类的混合,这取决于离子通道密度。在本研究中,我们分析了改变离子通道密度对两种研究较好的轴突膜(即青蛙有髓轴突和鱿鱼巨轴突)阈发放频率的影响。此外,我们还更详细地分析了海马神经元模型。这些模型都是基于电压钳研究,因此包含可实验测量的参数。选择分析离子通道密度变化的影响是因为它们具有生理和药理学相关性。我们使用分岔分析表明,两种轴突模型都显示出独立于离子通道密度的第二类动力学,尽管两种模型在离子通道密度平面上都有一个区域具有 N 形的稳态电流-电压关系(这是第一类动力学的前提,与海马模型中的这种动力学类型相关)。总之,我们的结果表明,海马体和两种轴突膜代表两种不同的膜;膜的第一类和第二类动力学之间的转换依赖于离子通道密度,而膜的动力学则独立于离子通道密度。两种膜类型之间的差异表明存在功能差异,这与体膜比轴突膜具有更大的灵活性相兼容。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1755/2858683/37af7e78fe11/pcbi.1000753.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验