School of Mechanical Systems Engineering, Chonnam National University, Gwangju 500-757, Korea.
Lab Chip. 2010 Jul 7;10(13):1706-11. doi: 10.1039/c000463d. Epub 2010 Apr 26.
Microrobots developed by the technological advances are useful for application in various fields. Nevertheless, they have limitations with respect to their actuator and motility. Our experiments aim to determine whether a bioactuator using the flagellated bacteria Serratia marcescens would enhance the motility of microrobots. In this study, we investigate that the flagellated bacteria Serratia marcescens could be utilized as actuators for SU-8 microstructures by bovine serum albumin-selective patterning. Firstly, we analyze the adherence of the bacteria to the SU-8 micro cube by selective patterning using 5% BSA. The results show that number of attached-bacteria in the uncoated side of the selectively- coated micro cube with BSA increased by 200% compared with that in all sides of the non treated micro cube. Secondly, the selectively BSA coated micro cube had 210% higher motility than the uncoated micro cube. The results revealed that the bacteria patterned to a specific site using 5% BSA significantly increase the motility of the bacteria actuated microstructure.
微机器人的发展得益于技术的进步,在各个领域都有广泛的应用。然而,它们的执行器和运动能力存在局限性。我们的实验旨在确定是否可以利用鞭毛菌粘质沙雷氏菌作为生物执行器来增强微机器人的运动能力。在这项研究中,我们发现鞭毛菌粘质沙雷氏菌可以通过牛血清白蛋白选择图案化作为 SU-8 微结构的执行器。首先,我们通过使用 5%BSA 进行选择性图案化来分析细菌对 SU-8 微立方的附着。结果表明,与非处理微立方的所有侧面相比,在涂有 BSA 的微立方无涂层侧附着的细菌数量增加了 200%。其次,与未涂覆的微立方相比,涂覆有 BSA 的微立方的运动性提高了 210%。结果表明,使用 5%BSA 将细菌图案化到特定位置可以显著提高细菌驱动的微结构的运动性。