Suppr超能文献

细菌推动微球的趋化转向。

Chemotactic steering of bacteria propelled microbeads.

机构信息

Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.

出版信息

Biomed Microdevices. 2012 Dec;14(6):1009-17. doi: 10.1007/s10544-012-9701-4.

Abstract

Flagellated bacteria have been embraced by the micro-robotics community as a highly efficient microscale actuation method, capable of converting chemical energy into mechanical actuation for microsystems that require a small payload and high rate of actuation. Along with being highly motile, Serratia marcescens (S. marcescens), our bacterium species of interest, is a highly agile biomotor capable of being steered via chemotaxis. In this paper, we attached S. marcescens bacteria to polystyrene microbeads towards creating biohybrid that can propel themselves towards an attractive chemical source. Using a three-channel microfluidic device, linear chemical gradients are generated to compare the behavior of bacteria-propelled beads in the presence and absence of a chemoattractant, L-aspartate. We tested and compared the behavior of three different bacteria-attached bead sizes (5, 10 and 20 μm diameter) using a visual particle-tracking algorithm, and noted their behavioral differences. The results indicate that in the presence of a chemoattractant, the S. marcescens-attached polystyrene beads exhibit a clear indication of directionality and steering control through the coordination of the bacteria present on each bead. This directionality is observed in all bead size cases, suggesting potential for targeted payload delivery using such a biohybrid micro-robotic approach.

摘要

鞭毛细菌被微机器人领域所接受,成为一种高效的微尺度驱动方法,能够将化学能转化为需要小有效载荷和高驱动速率的微系统的机械驱动。伴随着高度的运动性,我们感兴趣的细菌物种粘质沙雷氏菌(Serratia marcescens)是一种高度灵活的生物马达,能够通过趋化性进行转向。在本文中,我们将粘质沙雷氏菌附着在聚苯乙烯微珠上,以制造能够向有吸引力的化学源自行推进的生物杂交体。使用三通道微流控装置,产生线性化学梯度,以比较在存在和不存在化学引诱剂 L-天冬氨酸的情况下,细菌驱动的微珠的行为。我们使用可视化粒子跟踪算法测试和比较了三种不同大小的细菌附着微珠(直径 5、10 和 20 μm)的行为,并注意到它们的行为差异。结果表明,在存在化学引诱剂的情况下,附着有粘质沙雷氏菌的聚苯乙烯微珠表现出明显的方向性和转向控制,这是通过每个微珠上存在的细菌的协调实现的。在所有微珠尺寸的情况下都观察到了这种方向性,这表明使用这种生物杂交微型机器人方法进行靶向有效载荷输送具有潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验