Unilever Research and Development Laboratory, Port Sunlight, Quarry Road East, Bebington, Wirral, UK.
Langmuir. 2010 Jul 6;26(13):10614-26. doi: 10.1021/la100846b.
The surface adsorption behavior and the solution microstructure of mixtures of the C(6) isomer of anionic surfactant sodium para-dodecyl benzene sulfonate, ABS, with nonionic surfactant monodecyl triethyleneglycol ether, C(10)E(3,) have been investigated using a combination of neutron reflectivity, NR, and small-angle neutron scattering, SANS. In solution, the mixing of C(10)E(3) and ABS results in the formation of small globular micelles over most of the composition range (100:0 to 20:80 ABS/C(10)E(3)). Planar aggregates (lamellar or unilamellar vesicles, ULV) are observed for solution compositions rich in the nonionic surfactant (>80 mol % nonionic). Prior to the transition to planar aggregates, the micelle aggregation number increases with increasing nonionic composition. The lamellar-phase region is preceded by a narrow range of composition over which mixtures of micelles and small unilamellar vesicles coexist. The variation in surface absorption behavior with solution composition shows a strong surface partitioning of the more surface-active component, C(10)E(3). This pronounced departure from ideal mixing is not readily explained by existing surfactant mixing theories. In the presence of Ca(2+) ions, a more complex evolution of solution phase behavior with solution composition is observed. The lamellar-phase region occurs over a broader range of solution compositions at the expense of the small-vesicle phase. The phase boundaries are shifted to lower nonionic compositions, and the extent to which the solution-phase diagrams are modified increases with increasing calcium ion concentration. The SANS data for the large planar aggregates are consistent with large polydisperse flexible unilamellar vesicles. In the presence of Ca(2+) ions, the surface adsorption patterns become more consistent with ideal mixing in the nonionic-rich region of the surface-phase diagram. However, in the ABS-rich regions the surface behavior is more complex because of the spontaneous formation of more complex surface microstructures (bilayers to multilayers). Both in water and in the presence of Ca(2+) ions the variations in the surface adsorption behavior and in the solution mesophase structure do not appear to be closely correlated.
使用中子反射率(NR)和小角中子散射(SANS)相结合的方法,研究了 C(6)异构体阴离子表面活性剂十二烷基苯磺酸钠(ABS)与非离子表面活性剂单十二烷基三乙二醇醚(C(10)E(3))混合物在表面吸附行为和溶液微观结构。在溶液中,C(10)E(3)和 ABS 的混合导致在大部分组成范围内(100:0 至 20:80 ABS/C(10)E(3))形成小的球形胶束。对于富含非离子表面活性剂的溶液组成(>80 mol%非离子),观察到平面聚集物(层状或单层囊泡,ULV)。在过渡到平面聚集物之前,胶束聚集数随着非离子组成的增加而增加。胶束和小单层囊泡共存的混合物的组成范围很窄,然后是层状相区域。随着溶液组成的变化,表面吸收行为的变化强烈表明更具表面活性的组分 C(10)E(3)在表面上的强烈分配。这种与理想混合的明显偏离不容易用现有的表面活性剂混合理论来解释。在存在 Ca(2+)离子的情况下,随着溶液组成的变化,溶液相行为会发生更复杂的演变。层状相区域出现在更宽的溶液组成范围内,牺牲了小囊泡相。相界向更低的非离子组成移动,并且溶液相图的改变程度随着钙离子浓度的增加而增加。大平面聚集体的 SANS 数据与大的多分散柔性单层囊泡一致。在存在 Ca(2+)离子的情况下,表面吸附模式在表面相图的非离子丰富区域变得更符合理想混合。然而,在 ABS 丰富的区域,表面行为更加复杂,因为自发形成了更复杂的表面微观结构(双层至多层)。无论是在水中还是在存在 Ca(2+)离子的情况下,表面吸附行为和溶液中间相结构的变化似乎都没有密切相关。