Tucker I, Penfold J, Thomas R K, Bradbury R, Grillo I
Unilever Research and Development Laboratory, Port Sunlight, Quarry Road East, Bebington, Wirral, United Kingdom.
Langmuir. 2009 May 5;25(9):4934-44. doi: 10.1021/la804116d.
The addition of straight chain alkanols to the dialkyl chain cationic/nonionic surfactant mixtures of dihexadecyl dimethyl ammonium bromide, DHDAB, and dodecaethylene monododecyl ether, C(12)E(12), has been used to manipulate the mean curvature of the self-assembled aggregates. This induces some significant structural changes and notably the formation of small unilamellar vesicles, nanometer scaled vesicles, L(sv). These structural changes have been measured and quantified using small angle neutron scattering, SANS. At a solution concentration of 25 mM, the DHDAB/C(12)E(12) mixtures have a structural evolution, from C(12)E(12) rich to DHDAB rich solution compositions, of small globular micelles, L(1), to micellar/vesicle coexistence, L(1)/L(v) or L(v)/L(1), to vesicle structures, L(v), bilamellar or multilamellar vesicles, blv or mlv. The impact of the addition of straight chain alkanols (in the range octanol to hexadecanol) depends upon the alkyl chain length and the amount of alcohol added. Furthermore, the effect of the addition of octanol and decanol appears to be distinctly different from that of the larger straight chain alkanols of dodecanol and hexadecanol. For the addition of octanol and decanol to C(12)E(12) rich DHDAB/C(12)E(12) mixtures, the alcohol is solubilized into the micellar core, and as the amount of alcohol added increases, significant micellar growth is ultimately observed. However, notably at intermediate DHDAB/C(12)E(12) solution compositions, in the region of L(1)/L(v) or L(v)/L(1) coexistance in the absence of alcohol, the addition of octanol or decanol promotes the formation of relatively small unilamellar vesicles, L(sv), nanometer sized vesicles, with a mean diameter in the range 70-140 A. For solutions that are rich in DHDAB, the addition of octanol or decanol results in a transition to L(v)/L(sv) coexistence and ultimately to L(v) formation. In contrast, the addition of the larger straight chain length alkanols, dodecanol or hexadecanol, to DHDAB/C(12)E(12) mixtures results in a somewhat different behavior. In this case, the addition of dodecanol or hexadecanol results in the transition from L(1) to L(1)/L(v) to L(v) occurring for solutions less rich in DHDAB than is observed in the absence of alcohol. That is, there is an enhanced tendency toward the formation of structures with a lower net curvature, either blv or mlv. Notably, for these mixtures, the small unilamellar nanometer scaled vesicle phase, L(sv), is absent.
将直链烷醇添加到十六烷基二甲基溴化铵(DHDAB)和十二乙烯单十二烷基醚(C(12)E(12))的二烷基链阳离子/非离子表面活性剂混合物中,已被用于操控自组装聚集体的平均曲率。这引发了一些显著的结构变化,特别是形成了小单层囊泡,即纳米级囊泡,L(sv)。这些结构变化已通过小角中子散射(SANS)进行了测量和量化。在溶液浓度为25 mM时,DHDAB/C(12)E(12)混合物具有从富含C(12)E(12)到富含DHDAB的溶液组成的结构演变,从小球状胶束L(1)到胶束/囊泡共存L(1)/L(v)或L(v)/L(1),再到囊泡结构L(v),即双层或多层囊泡blv或mlv。直链烷醇(辛醇到十六醇范围内)添加的影响取决于烷基链长度和添加的醇量。此外,添加辛醇和癸醇的效果似乎与较大直链烷醇十二醇和十六醇的效果明显不同。对于向富含C(12)E(12)的DHDAB/C(12)E(12)混合物中添加辛醇和癸醇,醇被溶解到胶束核中,并且随着添加醇量的增加,最终观察到显著的胶束生长。然而,值得注意的是,在中间DHDAB/C(12)E(12)溶液组成中,即在不存在醇时的L(1)/L(v)或L(v)/L(1)共存区域,添加辛醇或癸醇促进了相对较小的单层囊泡L(sv)的形成,即纳米尺寸的囊泡,平均直径在70 - 140 Å范围内。对于富含DHDAB的溶液,添加辛醇或癸醇会导致向L(v)/L(sv)共存的转变并最终形成L(v)。相比之下,向DHDAB/C(12)E(12)混合物中添加较大直链长度的烷醇十二醇或十六醇会导致 somewhat different behavior(此处原文有误,推测为“somewhat different behavior”,可译为“ somewhat different behavior(某种程度上不同的行为)”)。在这种情况下,添加十二醇或十六醇会导致对于比在不存在醇时观察到的更贫DHDAB的溶液,从L(1)到L(1)/L(v)再到L(v)的转变发生。也就是说,形成具有较低净曲率结构(blv或mlv)的趋势增强。值得注意的是,对于这些混合物,不存在小单层纳米级囊泡相L(sv)。