Wang Fei, Syeda-Mahmood Tanveer, Vemuri Baba C, Beymer David, Rangarajan Anand
IBM Almaden Research Center, San Jose, CA, USA.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):648-55. doi: 10.1007/978-3-642-04268-3_80.
In this paper, we propose a generalized group-wise non-rigid registration strategy for multiple unlabeled point-sets of unequal cardinality, with no bias toward any of the given point-sets. To quantify the divergence between the probability distributions--specifically Mixture of Gaussians--estimated from the given point sets, we use a recently developed information-theoretic measure called Jensen-Renyi (JR) divergence. We evaluate a closed-form JR divergence between multiple probabilistic representations for the general case where the mixture models differ in variance and the number of components. We derive the analytic gradient of the divergence measure with respect to the non-rigid registration parameters, and apply it to numerical optimization of the group-wise registration, leading to a computationally efficient and accurate algorithm. We validate our approach on synthetic data, and evaluate it on 3D cardiac shapes.
在本文中,我们提出了一种针对多个基数不等的未标记点集的广义逐组非刚性配准策略,该策略对任何给定的点集均无偏向。为了量化从给定的点集估计出的概率分布(具体为高斯混合分布)之间的差异,我们使用了一种最近开发的称为詹森 - 雷尼(JR)散度的信息论度量。对于混合模型在方差和分量数量上不同的一般情况,我们评估多个概率表示之间的闭式JR散度。我们推导了散度度量相对于非刚性配准参数的解析梯度,并将其应用于逐组配准的数值优化,从而得到一种计算高效且准确的算法。我们在合成数据上验证了我们的方法,并在三维心脏形状上对其进行了评估。