Suppr超能文献

使用全局和局部度量的图形模型与可变形微分同胚群体配准

Graphical models and deformable diffeomorphic population registration using global and local metrics.

作者信息

Sotiras Aristeidis, Komodakis Nikos, Glocker Ben, Deux Jean-François, Paragios Nikos

机构信息

Laboratoire des Mathématiques Appliquées aux Systèmes (MAS), Ecole Centrale de Paris, France.

出版信息

Med Image Comput Comput Assist Interv. 2009;12(Pt 1):672-9. doi: 10.1007/978-3-642-04268-3_83.

Abstract

In this paper we propose a novel framework to unite a population to an optimal (unknown) pose through their mutual deformation. The registration criterion comprises three terms, the first imposes compactness on appearance of the registered population at the pixel level, the second tries to minimize the individual distances between all possible pairs of images, while the last is a regularization one imposing smoothness on the deformation fields. The problem is reformulated as a graphical model that consists of hidden (deformation fields) and observed variables (intensities). A novel deformation grid-based scheme is proposed that guarantees the diffeomorphism of the deformation and is computationally favorably compared to standard deformation methods. Towards addressing important deformations we propose a compositional approach where the deformations are recovered through the sub-optimal solutions of successive discrete MRFs by using efficient linear programming. Promising experimental results using real 2D data demonstrate the potentials of our approach.

摘要

在本文中,我们提出了一种新颖的框架,通过群体间的相互变形将其统一到一个最优(未知)姿态。配准准则由三项组成,第一项在像素级别对配准群体的外观施加紧凑性,第二项试图最小化所有可能图像对之间的个体距离,而最后一项是正则化项,对变形场施加平滑性。该问题被重新表述为一个由隐藏变量(变形场)和观测变量(强度)组成的图形模型。我们提出了一种基于变形网格的新颖方案,该方案保证了变形的微分同胚性,并且在计算上比标准变形方法更具优势。为了解决重要的变形问题,我们提出了一种合成方法,通过使用高效的线性规划,通过连续离散马尔可夫随机场的次优解来恢复变形。使用真实二维数据的有前景的实验结果证明了我们方法的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验